
The IDE64 Project

user’s guide
February 24, 2019

for card versions V2.1, V3.1, V3.2, V3.4, V3.4+, V4.1 and V4.2
with IDEDOS 0.90 (20110305)!

THE ATA/ATAPI CONTROLLER CARD FOR COMMODORE 64/128 COMPUTERS

SUPPORTING HARD DISK, CDROM, DVD, ZIP DRIVE, LS-120 (A-DRIVE), COMPACTFLASH AND MORE

IDEDOS 0.90, February 24, 2019

Document maintained by:

Kajtár Zsolt
Szigliget
Hóvirág u.15.
8264
Hungary
mail: soci at c64.rulez.org

Latest version of this document at: http://idedos.ide64.org/

Copyright © 2003–2019 Kajtár Zsolt (Soci/Singular).

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version
1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, with the no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section
entitled “21 GNU Free Documentation License”.

2

http://idedos.ide64.org/

IDEDOS 0.90, February 24, 2019

Foreword

This is the official user’s guide for the IDE64 interface cartridge V2.1,
V3.1, V3.2, V3.4, V3.4+, V4.1 and V4.2 with IDEDOS 0.90. Incom-
plete but planned parts are marked this way.

This document always represents the actual state of development
and the facts stated here may or may not apply to future or old ver-
sions of IDEDOS or the IDE64 cartridge. Please make sure you have
the current version for your software and hardware!

It’s recommended that you read all sections of this manual. For
most of your questions the answers are somewhere in this text. ;-)

Disclaimer

All copyrights are held by their by their respective owners, unless
specifically noted otherwise. Use of a term in this document should
not be regarded as affecting the validity of any trademark or service
mark. Naming of particular products or brands should not be seen as
endorsements.

No liability for the contents of this document can be accepted.
Use the concepts, examples and information at your own risk. There
may be errors and inaccuracies that could be damaging to your sys-
tem, although any damage is highly unlikely. Proceed with caution;
the author(s) do not take any responsibility.

3

IDEDOS 0.90, February 24, 2019

4

IDEDOS 0.90, February 24, 2019 CONTENTS

Contents

1 About the cartridge 11

2 Hardware setup 15
2.1 Cabling, jumpers . 15
2.2 Power supply . 16
2.3 CompactFlash connector . 16
2.4 Zip drive . 17
2.5 LS-120, A-Drive . 18
2.6 Peripherals . 18
2.7 Battery . 19
2.8 Let’s start . 19
2.9 Troubleshooting . 20

3 The Setup utility 23
3.1 Standard setup . 23
3.2 Color setup . 28
3.3 Device numbers . 28
3.4 Advanced setup . 30

4 Preparing a blank disk 35
4.1 The CFSfdisk utility . 36
4.2 CFSfdisk notes . 40
4.3 Mixed disks . 41

5 Using partitions 43

5

CONTENTS IDEDOS 0.90, February 24, 2019

6 Using directories 45
6.1 Paths . 49
6.2 Wildcards . 50
6.3 Raw directory access . 52

7 Using files 53
7.1 SAVE . 55
7.2 LOAD, VERIFY . 56
7.3 OPEN . 57
7.4 CLOSE . 65
7.5 INPUT#, GET# . 65
7.6 PRINT# . 65
7.7 CMD . 66
7.8 File operations . 66

8 Direct access 67
8.1 Block-read . 67
8.2 Block-write . 68
8.3 Buffer-pointer . 69
8.4 TOC-read . 70
8.5 Sub-channel-read . 70

9 The File Manager 75
9.1 Plugins . 77
9.2 Manager configuration file . 80

10 Using the monitor 85
10.1 Starting the monitor . 85
10.2 Disk commands . 87

6

IDEDOS 0.90, February 24, 2019 CONTENTS

10.3 Display and modify memory . 91
10.4 Execution control . 97
10.5 Memory area commands . 99
10.6 Miscellaneous . 101

11 DOS Wedge 109
11.1 At sign – DOS command . 109
11.2 At, number sign – select device 109
11.3 At, dollar sign – list directory . 110
11.4 Slash – load BASIC program . 110
11.5 Percent sign – load assembly program 110
11.6 Apostrophe – verify assembly file 111
11.7 Up arrow – autostart BASIC program 111
11.8 Left arrow – save BASIC program 112
11.9 Pound sign – autostart assemble program 112
11.10 Period – change directory . 113
11.11 Hashmark – execute shell . 113

12 BASIC extensions 115
12.1 CD – change directory . 115
12.2 CDCLOSE – insert medium . 116
12.3 CDOPEN – eject medium . 116
12.4 CHANGE – change device number 116
12.5 DATE – display date . 117
12.6 DEF – redefine F-keys . 117
12.7 DIR – list directory . 118
12.8 HDINIT – redetect drives . 118
12.9 INIT – init memory . 119
12.10 KILL – disable cartridge . 119

7

CONTENTS IDEDOS 0.90, February 24, 2019

12.11 KILLNEW – recover basic program 120
12.12 LL – long directory list . 120
12.13 LOAD – load a program . 122
12.14 MAN – start manager . 123
12.15 MKDIR – create directory . 123
12.16 RM – remove file . 124
12.17 RMDIR – remove directory . 124
12.18 SAVE – save a program . 124
12.19 SYS – start ML program . 125
12.20 VERIFY – verify program . 125

13 Programming in assembly 127
13.1 Standard KERNAL routines . 127
13.2 IDE64 specific routines . 145
13.3 IDE64 compatible programming 153

14 PCLink 161
14.1 PCLink over IEC bus . 161
14.2 PCLink over PC64 cable . 162
14.3 PCLink over RS-232C . 163
14.4 PCLink over ethernet . 163
14.5 PCLink over USB . 164

15 Command channel 165
15.1 File management commands . 165
15.2 Filesystem management commands 167
15.3 Partition management commands 171
15.4 Device management commands 173
15.5 Direct access commands . 179

8

IDEDOS 0.90, February 24, 2019 CONTENTS

15.6 Directory handling commands . 180
15.7 CD-ROM related commands . 183
15.8 Misc commands . 191

16 IDEDOS error messages 193

17 Compatibility 199
17.1 Hardware . 199
17.2 Software . 203

18 Updating IDEDOS 205

19 Filesystem checking 211
19.1 Using CFSfsck . 211
19.2 Errors and resolutions . 212

20 Frequently Asked Questions 215

21 GNU FDL 217

A The ShortBus 227

B The clock-port 233

C More information 237
C.1 Related Internet sites . 237
C.2 Distributors . 237

D Acronyms 239

9

CONTENTS IDEDOS 0.90, February 24, 2019

10

IDEDOS 0.90, February 24, 2019 ABOUT THE CARTRIDGE

1

1 About the cartridge

The IDE64 cartridge was created to provide the fastest I/O and biggest
storage capacity available for the Commodore 64 and 128 computers.

With this cartridge it’s possible to connect and use ATA(PI) drives
like hard disks, CD-ROM and DVD drives, CompactFlash cards, Zip
drive, LS-120 (A-Drive) or a networked host computer just like ordi-
nary disk drives.

The cartridge contains a 64 or 128 KiB PEROM, which holds the
IDEDOS disk operating system, a machine code monitor, file man-
ager and setup utility. 28 KiB of RAM is used for internal buffers,
and a battery powered real time clock chip is used for time keeping.

Two LEDs indicate the presence of cartridge and drive activity. A
port called ShortBUS is installed for peripherals like DUART Card,
ETH64. There’s also a RESET button for quick restarts.

The V4.1 cartridge adds a port to support clock-port peripherals
(like ETH64 II, RR-Net), an USB FIFO chip for PCLink file transfers
and two additional LEDs for secondary interface and fault indication.
The V4.2 cartridge increases the PEROM size to 512 KiB.

The IDE64 cartridge is compatible with a wide variety of hard-
ware including (but not limited to):

• Commodore serial bus drives, datassette
• CMD SuperCPU
• CMD FD-2000/FD-4000/HD
• JiffyDOS, Dolphin DOS
• PAL/NTSC C64 or C128 in C64 mode
• REU

11

1

ABOUT THE CARTRIDGE IDEDOS 0.90, February 24, 2019

• Turbo232, (E)TFE, RR-Net

• +60K

• 2nd SID

There are of course incompatible or unsupported hardware (most
notably cracking or fastload cartridges, RamLink, etc.), for more in-
formation read section “17 Compatibility” at the end of the guide.

The architecture of the cartridge allows easy update of firmware,
so it’s possible to be up to date with the latest versions of IDEDOS.

IDEDOS can handle four disks each clipped to a maximal 137 GB
(128 GiB), and DVD drives up to 550 GB (512 GiB). A disk can be
divided into a maximal of 16 partitions.

Files can be organized into a tree structured directory, each direc-
tory can contain 1023 files. Maximal file size is 4 GiB for regular
files and 16 MiB for relative files. Filenames can be 16 characters
long plus a 3 character file type. Automatic file timestamping is sup-
ported.

IDEDOS 0.90 is free software, the source and the tools required
to build the firmware are public and available for POSIX systems and
Win32. The source is licensed under the GPL-2:

IDEDOS is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any
later version.

IDEDOS is distributed in the hope that it will be use-
ful, but WITHOUT ANY WARRANTY; without even

12

IDEDOS 0.90, February 24, 2019 ABOUT THE CARTRIDGE

1

the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General
Public License along with this program; if not, write to
the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA

You are welcome to review the code and send suggestions, im-
provements or bug fixes if you want.

Please do not work around possible IDEDOS bugs in your soft-
ware, better report them, so they can be fixed in future versions!
Thanks.

13

1

ABOUT THE CARTRIDGE IDEDOS 0.90, February 24, 2019

14

IDEDOS 0.90, February 24, 2019 HARDWARE SETUP

22 Hardware setup

2.1 Cabling, jumpers

Figure 1: IDE64 V3.4
cartridge with a 128 MB
CompactFlash card

Make sure that the computer is powered off.
The cartridge must be plugged into the ex-
pansion port so that the chips are on top as
seen on the picture.

Select the IDEDOS bank (on a V3.4+
cartridge) while the computer is switched off.

The USB PCLink cable of the V4.1 and
V4.2 cartridge must not be connected to the
host pc when plugging in the cartridge!

If using ethernet or serial PCLink, leave
the network or serial cable disconnected.
Connecting PC64 PCLink cable while either
the host or the computer is powered is not
recommened.

The ATA(PI) drives are connected with
a 40 or 80 conductor IDE-cable to the port
at the end of the cartridge. Make sure that
the red line on the cable is at pin 1 on both

ends. (pin 1 is usually near the RESET button at the right end of the
cartridge, and near the power cord on the drives)

Two drives can be connected on the cable, one is called master, the
other slave. It’s important that there’s only one master and one slave
on a cable, so check the jumper setting of your drives. Single units
must be configured as master, otherwise they might not be detected
on boot.

15

2

HARDWARE SETUP IDEDOS 0.90, February 24, 2019

2.2 Power supply

For reliable operation it’s recommended to have a “heavy duty” power
supply for the computer, as the original supplies (now probably over
20 years old) could be not up to the task of powering the cartridge
and the attached peripherals. These supplies are mostly refurbished
pc power supplies and can be found on the Internet with a little search-
ing.

If only the integrated CF connector is used and no external de-
vices are connected then no extra power supply is required, the slot is
powered from the cartridge port.

External IDE-bus drives need external power too, so connect them
to a pc power supply or to the matching connector of a heavy duty
supply.

Unmodified pc AT-style power supplies will work without prob-
lems (some require a minimal load to start, so it may not work alone
without any drives).

When using a ATX-style supply, these require that the green wire
is connected to a black one for startup. Check the wire description on
the box and do this at your own risk without connecting any drives to
the supply to minimize possible damage. If everything goes well, the
cooler must spin up.

First test your drives with the supply without connecting to the
cartridge to see if everything is OK.

2.3 CompactFlash connector

The integrated CF connector on V3.4, V3.4+, V4.1 and V4.2 versions
of the cartridge is a standard CompactFlash Type I connector. Cards

16

IDEDOS 0.90, February 24, 2019 HARDWARE SETUP

2plugged into it don’t need any external power supply.
Older cartridges can be equiped with an external IDE-CF adapter,

these adapters need an external +5 V supply.
Cheap CF-MMC/SD/SDHC adapters can also be used instead of

a real CF card. Some models are CompactFlash Type II and need
slight “adjustment” of the connector to fit.

WARNING!
The integrated and external IDE-CF adapters are not hot plug ca-
pable, so never change the CF card while the computer or the
slave drive is powered on!

If you want to use an ATA(PI) drive and CompactFlash card at
the same time with V3.4 or V3.4+, then configure the drive as slave,
because the CF card is always master.

With the V4.1 or V4.2 cartridge you can freely use two additional
drives beside the CompactFlash card, as the CF connector is on a
separate bus.

When using the on board CompactFlash connector and a slave
drive with a 80 conductor cable, make sure that the IDE64 cartridge
and the slave drive are connected to the drive connectors, while the
board connector with the longer part of the cable remains uncon-
nected! (The required PDIAG signal is not connected to the board
connector on 80 conductor cables, while on 40 conductor cables it is)

2.4 Zip drive

When using an ATAPI Zip drive it’s important that it’s jumpered as
Master A or Slave A, otherwise it won’t work. (old drives without A

17

2

HARDWARE SETUP IDEDOS 0.90, February 24, 2019

marking emulate a hard disk and do not need any special treatment)

NOTE

Not every Zip drive, cable and cartridge combinations work. It
may be necessary to put the drive at the middle of the cable so
that the remaining unconnected part of the cable is at least 15 cm
long.

2.5 LS-120, A-Drive

The LS-120 (A-Drive) works fine with regular 720 kB, 1.2 MB and
1.44 MB floppy disks or with the 120 MiB SuperDisk. Disks of CBM
1581, CMD FD-2000 and CMD FD-4000 are not supported by the
drive.

WARNING!
Read the ‘‘3.4.7 Linear write max’’ section before using LS-120
drives to avoid data corruption with some drive versions!

2.6 Peripherals

Peripherals (DUART card, ETH64, etc.) are connected to a 34 pin
port (called ShortBus) of the cartridge with a 34 wire cable similar to
the floppy cable in pcs, but without wire swapping. On the V4.1 and
V4.2 cartridge there’s a 22 pin clock-port for ETH64 II, RR-Net and
other clock-port peripherals. Peripherals do not require any external
power.

18

IDEDOS 0.90, February 24, 2019 HARDWARE SETUP

2WARNING!
Never connect or disconnect IDE64 peripherals while the com-
puter is powered on!

Read the “A The ShortBus” and “B The clock-port” appendixes
for configuration information before using peripherals.

2.7 Battery

There’s a battery holder on the back of the cartridge. It’s strongly
recommended to put a battery into it (CR2032 3 V) otherwise the
setup settings can’t be permanently stored and the file timestamping
won’t work. If using accu or super cap instead of battery, then enable
recharging in the setup utility.

2.8 Let’s start

When everything is ready, you may turn on your equipment. It’s rec-
ommended to first turn on the power supply, then the computer, how-
ever if you have drives that do not spin-up until the computer is turned
on and your AT-supply does not start without load (giving an annoy-
ing noise) you must do this the other way around.

If your drives are not detected on power on, try giving HDINIT

on the BASIC prompt. If still nothing, turn off your computer and
power supply, then check the cables and jumper settings. Sometimes
changing the master or slave configuration or the drives might help.

If everything is OK the boot screen should come up first (black
screen with light-blue characters) with the information on the version

19

2

HARDWARE SETUP IDEDOS 0.90, February 24, 2019

of IDEDOS and the connected drives. Then the standard C64 reset
screen should appear in less than 30 s, depending on the connected
drives. Holding down CONTROL will hold the boot up screen, so it
can be read. The boot screen only appears on power on.

2.9 Troubleshooting

On every power on IDEDOS does a short selftest of the hardware.
There’s a bit longer built in self test of IDEDOS when you hold down
LEFTSHIFT while turning on the computer (or simply use SHIFT-
LOCK).

NO PROPER BOOT Black screen, the red "stack" screen or garbled text
colors on boot indicate a probably weak power supply. See
section “2.2 Power supply”.

IDEDOS V0.90 PATCH 50 Everything looks fine. If you want to re-
detect your drives in case some are missing then use HDINIT.
If still nothing check the master/slave jumpers on drives and
cabling. Also you might try to use a different combination of
drives.

30719 BASIC BYTES FREE The firmware is likely missing or cor-
rupted, try to update1 it. Also this might indicate a broken
PEROM, reseat it or install a new one.

CPU You are using the wrong version of IDEDOS, SuperCPU version
on C64, or C64 version on SuperCPU.

1See section “18 Updating IDEDOS”.

20

IDEDOS 0.90, February 24, 2019 HARDWARE SETUP

2DE32 You have an old V2.1 cartridge, and tried to use a firmware
compiled for a newer cartridge. Recompile IDEDOS for early
V2.1, and update the firmware. Also this will happen when
using the wrong firmware on the V4.1 or V4.2 cartridge.

ROM The IDEDOS ROM checksum does not match. Try to update
the firmware. Clean contact edges, remove other cartidges or
the whole port expander. Too long ShortBus cable might also
cause this. Also you might try to reseat or replace the PEROM
chip.

RAM The cartridge RAM buffer does not work reliable. Clean contact
edges, remove other cartidges or the whole port expander. Too
long ShortBus cable might also cause this. Also you might try
to reseat or replace the RAM chip.

21

2

HARDWARE SETUP IDEDOS 0.90, February 24, 2019

22

IDEDOS 0.90, February 24, 2019 THE SETUP UTILITY

3

3 The Setup utility

The IDE64 cartridge has a battery backed up real time clock with
some memory (DS1302) used to store the configuration settings and
current time. The cartridge of course works without a battery too,
but then it’s using the default settings and no clock. If you do not like
these defaults, you can modify them in the Setup utility, and then save
them.

The Setup utility is started by pressing ← + RESTORE while in
interactive mode. (like STOP + RESTORE) Moving is done with cur-
sor keys, RETURN selects or changes item, + and − also changes
item. C= and STOP exits sub menu, while C= saves setting and STOP
discards them in main menu.

When the Setup utility is running it does not touch memory range
$0800–$FFFF so your work won’t lost when need to change some
settings.

3.1 Standard setup

General settings. “CPULT” is the processor port leak time in 0.1 s
resolution, depends on temperature and processor type.

3.1.1 Date, Time

Here’s possible to set the built in clock. This has affect on the DATE

command, the file timestamping and on TI$ (see “3.1.4 Set BASIC
clock”). The calendar is built in and works in range 1980–2079. (Y2K
compatible) The clock ticks while the computer is turned off. (but
requires battery)

23

3

THE SETUP UTILITY IDEDOS 0.90, February 24, 2019

Figure 2: Start screen of the setup utility

3.1.2 Start boot file

The file called ‘1//:BOOT,PRG’ can be auto started from the system
drive at power up or always after reset. The file must be executable
with RUN. Hold C= if you want to skip auto boot, or hold STOP to
skip starting of program. The BASIC variable ST (at $90) contains 0
after power on, and 1 after reset.

3.1.3 Disk fastloader

Enables fastloader for the 1541, 1570, 1571 and 1581 floppy drives.
(and fast read and write in manager) The fastloader auto detects drive
type, and is not used for unsupported drives. Also if the drive is capa-
ble of JiffyDOS fast protocol then the fastloader is automatically not

24

IDEDOS 0.90, February 24, 2019 THE SETUP UTILITY

3

Figure 3: Standard setup screen of the setup utility

used. Unfortunately some versions of 64HDD won’t work unless it’s
turned manually off. (For more read section “17 Compatibility”!)

3.1.4 Set BASIC clock

Sets the BASIC variable TI$ to the time in the built in clock, after
reset.

3.1.5 Keyboard repeat

Sets keyboard repeat after reset. (at $028A)

25

3

THE SETUP UTILITY IDEDOS 0.90, February 24, 2019

3.1.6 Lowercase chars

Select lower and uppercase chars or uppercase and graphics font after
reset or STOP + RESTORE.

3.1.7 Use DOS wedge

IDEDOS overrides KERNAL based DOS wedges, unless it’s disabled
here. For more read sections “11 DOS Wedge” and “17 Compatibil-
ity”!

3.1.8 C128 keyboard

If cartridge has cartconfig register (some V2.1, and any later version
of the cartridge), support is compiled in, and the computer is a C128
(without SuperCPU), it makes use of extra keys on keyboard. For list
of keys see Table 1!

Key Function

ESC CHR$(27)
TAB CHR$(9)
ALT Nothing
HELP Enter monitor
LINE FEED CHR$(10)
NO SCROLL Nothing
CURSOR KEYS and NUM PAD Their usual meaning

Table 1: C128 extra keys

26

IDEDOS 0.90, February 24, 2019 THE SETUP UTILITY

3

3.1.9 Direct write

Enables or disables the use of ‘B=W’. Cleared on reset. You may have
to enable it when creating filesystem.

3.1.10 Accu charging

Selects accu charging current. Leave it on Battery if not using accu
or super cap. Charging a battery is useless, and some low quality
products may even leak if charged.

3.1.11 CMD emulation

If enabled the returned ROM string for memory-read is different, and
‘/’ is allowed in filenames which makes a difference in path handling.
Also the partition listing is changed too.

3.1.12 Function keys

Enables function key support in direct mode. For list of default func-
tion key assignment see Table 14!

3.1.13 Control stops

If enabled, scrolling will be stopped, instead of slowed down, when
CONTROL is pressed. It may be easier to find things on the screen,
when it’s not moving.

27

3

THE SETUP UTILITY IDEDOS 0.90, February 24, 2019

3.1.14 Blocks free hack

For compatibility with some BBS software the ‘BLOCKS USED.’ mes-
sage can be changed to ‘32767 BLOCKS FREE.’ at the end of direc-
tory listings. The problem can be noticed when a program refuses
to save stuff because it thinks the disk is full (‘0 BLOCKS USED.’),
while actually the directory is empty, and there’s plenty of space.

3.1.15 Fast detection

In some configurations IDEDOS can wait half a minute or more on
system startup, while it’s trying to detect some non-existing devices.
This option will reduce the wait, however it might miss some slow
starting devices.

3.2 Color setup

The default colors of boot screen, manager and monitor can be chan-
ged here.

3.3 Device numbers

Device number mapping to drives. −− means drive is not accessible.

NOTE

Choosing a device number from 15 to 17 can lead to unexpected
incompatibilities with badly written software!

28

IDEDOS 0.90, February 24, 2019 THE SETUP UTILITY

3

Figure 4: Device number setup screen of the setup utility

3.3.1 System drive

This device number is used for loading the DOS wedge shell com-
mand2, auto booting3, manager configuration file4, and as the default
work drive for the monitor5. Also this device will be selected (at $BA)
after reset as the last used device for the DOS wedge commands6.

211.11 Hashmark – execute shell
33.1.2 Start boot file
49.2 Manager configuration file
510.2.1 Select work drive
611 DOS Wedge

29

3

THE SETUP UTILITY IDEDOS 0.90, February 24, 2019

3.3.2 Serial drive 8–11

Device number mapping for serial drives. Selecting 9 for serial drive
8, and 8 for serial drive 9 will effectively swap them. (of course only
if not using direct serial routines)

3.3.3 IDE 0–3

Device number mapping for IDE64 drives. Useful if you’ve installed
a drive as slave, but want to have it as device 12. For a temporary
device number change to device 8 it’s simpler and faster to use the
CHANGE command. See section “12 BASIC extensions”!

3.3.4 PCLink

Virtual drive. Needs serial, parallel, ethernet or USB cable and a
server program on the host computer. For more about PCLink read
the section “14 PCLink”!

3.3.5 Network address

Used for EPCLink, it allows to use several C64 and hosts to share the
same ethernet network. The network address setting must match on
the C64 and host side for a successful communication. For simple
setups leave it on 0.

3.4 Advanced setup

Various device “features” can be configured here for master and slave
ATA(PI) drives on primary and secondary interfaces. Some of these

30

IDEDOS 0.90, February 24, 2019 THE SETUP UTILITY

3

Figure 5: Advanced setup screen of the setup utility

settings affect the performance of IDEDOS.

3.4.1 Power management

Drive spin down time from disabled to 2 hours in 15 steps. Default
means do not touch drive’s power management settings. (almost all
drives support power management) The KILL! command will only
spin down those drives which have power management enabled here.

3.4.2 Retry on error

Tells the drive to retry on error.

31

3

THE SETUP UTILITY IDEDOS 0.90, February 24, 2019

3.4.3 Write cache

Will speed up writes if supported by the drive.

3.4.4 Read look-ahead

Will speed up short sequential reads if supported by the drive. If you
set “Linear read max” to it’s maximum, this does not affect perfor-
mance significantly.

WARNING!
Do not enable ‘‘Read look-ahead’’ on the ancient LPS170A hard-
drive, it’s bugged firmware will mix up sectors sometimes, and
it’ll damage the filesystem. Modern drives should be OK.

3.4.5 Slow down CD-ROM

Selects 1× speed on CD-ROMs and DVDs supporting speed settings.
This reduces noise of faster than 24× drives and gives faster spin up
times. Access times will be a bit longer, and small cache drives will
copy tons of small files also a bit longer. This option has no effect
on the bulk transfer rate on stock C64, because the cartridge trans-
fers data much slower, however on SuperCPU this may limit reading
speed. Also if you experience unreliable behaviour from the drive
(copying lot of files fail at different places due to constant spin up and
downs) then disable this.

32

IDEDOS 0.90, February 24, 2019 THE SETUP UTILITY

3

3.4.6 Linear read max

Maximal sequential read allowed by the drive. (setting it lower than
128 will degrade the performance of CFS filesystem greatly!) You
should decrease it from 128 if you get ?LOAD ERROR when loading a
big program. (this is very unlikely)

3.4.7 Linear write max

Same as above but for write operations.
WARNING!

Some versions of LS-120 drives with 1.2 MB or 1.44 MB disk
corrupt files if ‘‘Linear write max’’ is not set less than 12 (e.g.
11)! It’s dependent on the drive’s firmware version and/or pro-
ducer, so test your drive first! (With ZIP file extraction, 224
blocks program copy and load, etc.)

33

3

THE SETUP UTILITY IDEDOS 0.90, February 24, 2019

34

IDEDOS 0.90, February 24, 2019 PREPARING A BLANK DISK

4

4 Preparing a blank disk

To use a new disk with IDE64 you must first create the filesystem on
it. IDEDOS has it’s own filesystem called CFS. It allows to use disks
up to 128 GiB, files up to 4 GiB with holes and fast seeking, relative
files up to 16 MiB, 16 partitions, nested directories, customizable file
types, and new file permissions.

To create the filesystem on a hard drive, CompactFlash, Zip drive
and LS-120 drive use the provided CFSfdisk utility. It allows to create
partitions, change partition flags and create filesystems on them.

NOTE

You have to repartition the medium to IDEDOS’s native filesys-
tem in order to store data on them! Many new disks come with
filesystems not suitable for CBM files (e.g. FAT, NTFS).

First set the “Direct write” option7 in the setup utility to enabled,
then start the format utility. Follow the instructions. Don’t forget that
formatting a partition will erase all data on it permanently!

CD-ROM/DVD drives do not need any special treatment, just use
ISO9660 or Joliet format CDs to be able to read them. (Rock Ridge
Extensions are not supported, these CDs will have short filenames un-
less Joliet extension is also present) Multi-session and mixed format
discs are both supported. Everything after the last dot or after the
last comma will be used as file type. There’s a compile time option
for disabling the automatic extension to file type conversion, in case
you’d like to have everything as ‘PRG’.

7See section “3.1.9 Direct write”.

35

4

PREPARING A BLANK DISK IDEDOS 0.90, February 24, 2019

DVD drives work no different than CD-ROM drives, DVDs writ-
ten with the ISO9660/Joilet format will work, and ISO9660+UDF
(most DVDs) will only have short filenames, as the UDF filesystem
is not supported.

Floppy disks for LS-120 may require physical format before the
creation of the filesystem. Use the format (N) command described in
section “15 Command channel”.

4.1 The CFSfdisk utility

The partitioner tool and the CFS filesystem creator is integrated into
one executable called CFSfdisk. First it was a prototype utility run-
ning on GNU/Linux systems, then it was ported to C64 with the CC65
compiler, and finally it was rewritten in assembly by hand. CFSfdisk
is released under the GPL-2, the 64tass source can be downloaded
with the IDEDOS source.

Before partitioning or formatting go into the setup and change
“Direct write” to enabled. Then load and start CFSfdisk.

CFSfdisk version 12a
Copyright (C) 2001-2016 Kajtar Zsolt (Soci/Singular)

CFSfdisk comes with ABSOLUTELY NO WARRANTY; This is free
software, and you are welcome to redistribute it under
certain conditions; see LICENSE for details. (GPL-2)

Drive number (4-30, default 12): _

CFSfdisk first needs to know the device number of the drive to
be repartitioned. It’s usually 12 or 13, see your setup settings on
device number assignment for drives. Remember that there will be
no changes made on disk unless you write them with command ‘W’.

36

IDEDOS 0.90, February 24, 2019 PREPARING A BLANK DISK

4

Did not found any CFS partition entry in PC BIOS partition
table. I assume you want to use the whole disk.

If you want to share the disk with other operating systems, use
the fdisk utility, and make a partition entry with type 0xCF.

Creating new disklabel.
Creating new partition table.

All is good so far, the whole disk will be used for IDEDOS. If you
only want to use some part of it instead, then read the notes at the end
of this chapter.

Command (m for help): m
Command action

a select boot partition o clear partition table
b change partition’s name p print the partition table
c clean boot sector r toggle writeable flag
d delete partition s save table to file
f toggle formatting flag t change partition’s type
g set global disklabel u load backup partition table
h toggle hidden flag q quit without saving changes
l load table from file w write changes to disk
m print this menu x expert geometry setup
n add new partition

Typing ‘M’ lists possibilities. There are no partitions yet, so let’s
create one.

Command (m for help): n
Partition number (1-16, default 1): 1
Start (2-1253951, default 2):
Use 123, +123, +123G, +123M or +123K
(9-1253951, default 1253951): +306m
Partition’s name: stuff

This creates partition 1 called ‘stuff’ beginning on the start of
the disk, and it will fill the half of the disk. (∼300 MiB) It’s possible

37

4

PREPARING A BLANK DISK IDEDOS 0.90, February 24, 2019

to give the exact start and end position or the size of the partition in
sectors (e.g. +2342) for power users. For everyday use +1048576K
or +1024M or +1G creates an example partition with a size of 1 GiB.
(metrics are powers of 1024, not 1000!)

After adding some more partitions, here’s an example partition
list:

Command (m for help): p

Drive 12: 1253952 sectors (612 MiB)
Disklabel: idedos disklabel

Nr Flags Start End Size(KiB) Id System Name
1*F-- 3 626690 313344 1 CFS stuff
2 F-- 626691 831490 102400 1 CFS work
3 F-- 831491 864258 16384 1 CFS incoming
4 F-- 864259 1253951 194846+ 1 CFS backup

Partitions marked with the F flag will be formatted, H will be hid-
den and R will be read only. The asterix in front marks the boot parti-
tion.

Now let’s change the global disklabel, and the default boot parti-
tion (I like to start at the work partition after boot).

Command (m for help): g
New disklabel: soci’s disk

Command (m for help): a
Partition number (1-16, default 1): 2
Partition 1 set as boot partition.

That’s all for now, let’s start formatting (or you can use ‘Q’ to
abort):

Command (m for help): w

38

IDEDOS 0.90, February 24, 2019 PREPARING A BLANK DISK

4

Drive 12: 1253952 sectors (612 MiB)
Disklabel: soci’s disk

Nr Flags Start End Size(KiB) Id System Name
1 F-- 3 626690 313344 1 CFS stuff
2*F-- 626691 831490 102400 1 CFS work
3 F-- 831491 864258 16384 1 CFS incoming
4 F-- 864259 1253951 194846+ 1 CFS backup

Write out this partition table (Y/N, default N): y
Formatting partition 1...done.
Formatting partition 2...done.
Formatting partition 3...done.
Formatting partition 4...done.

*** TURN OFF THE COMPUTER WHEN FINISHED PARTITIONING ***

The maximal formatting time of a 137 GB partition on a harddisk
takes ∼28 min, this is slightly faster on CF cards. There’s a count-
down displayed while the formatting is in progress. Big partitions
like this are not recommended, as checking the integrity with CFSf-
sck even if it’s empty takes at least twice as long.

After filling partition 4 with lot of important stuff, let’s mark it
read only. Load the CFSfdisk utility and start it.

Command (m for help): r
Partition number (1-16, default 1): 4
Partition 4 flags toggled.

Command (m for help): w

Drive 12: 1253952 sectors (612 MiB)
Disklabel: soci’s disk

Nr Flags Start End Size(KiB) Id System Name

39

4

PREPARING A BLANK DISK IDEDOS 0.90, February 24, 2019

1 --- 3 626690 313344 1 CFS stuff
2*--- 626691 831490 102400 1 CFS work
3 --- 831491 864258 16384 1 CFS incoming
4 --R 864259 1253951 194846+ 1 CFS backup

Write out this partition table (Y/N, default N): y

*** TURN OFF THE COMPUTER WHEN FINISHED PARTITIONING ***

Hiding a partition can be done the same way, by using the ‘H’
command.

4.2 CFSfdisk notes

CFSfdisk auto detects CHS and LBA disks, so you don’t have to
worry about this. But if it’s wrong and you want to change it, use
“expert geometry setup”. The current setting is visible in the ‘Drive
xx:’ line, if there are numbers about cylinders, etc. then the disk is in
CHS format.

If you only want to reformat a partition without deleting and re-
adding it, just use the “toggle formatting flag” command to toggle the
format flag. Or change it’s type to CFS even if it was already in CFS
format, by using the “change partition’s type” command.

The “clean boot sector” command can be used to force CFSfdisk
to treat the disk as new. This can be used to ignore the CF BIOS
partition setting, if there’s any.

The “clear partition table” command will remove all partitions in
one command, while the “delete partition” command just removes the
selected one.

It’s possible to recover a deleted partition by adding it as new with

40

IDEDOS 0.90, February 24, 2019 PREPARING A BLANK DISK

4

the known correct start and end addresses, and then switching off the
formatting flag for the partition before writing changes to disk.

Partition layout can be backed up and restored by using the com-
mands “load table from file” and “save table to file”. CFSfdisk checks
if the file is for this device or not, to avoid mistakes. Use the “toggle
formatting flag” to reformat partitions as needed. By default none of
the partitions will be formatted after loading a backup.

By starting with CFSfdisk version 10, the backup partition table
is created at the end of the disk, unless the location was already set
by ealier partitioning. The backup table is automatically syncronized
with the primary table on writing changes to disk, or when using CFS-
fsck. The “load backup partition table” can be used to load it, in case
of emergency. This function does not work well with disks partitioned
by earlier versions of CFSfdisk when the the boot sector was lost, as
then the guess for the location will be wrong.

4.3 Mixed disks

It’s possible to mix CFS partitions with other non-native partitions
like FAT when using the MSDOS partitioning sheme.

To do this create a primary partition with type 0xCF by a partition-
ing tool of your choice, and rewrite or clear the MBR. This special
partition will be recognized by CFSfdisk, and all partitions and parti-
tion tables for IDEDOS will be created within this area.

Unfortunately not all partitioning tools can set arbitrary partition
types. In this case just create any supported type and CFSfdisk will
ask which primary partition to re-purpose as CFS.

There’s even a custom MBR loader for x86 systems, which can
live together with the IDEDOS signature in the boot sector, and boot

41

4

PREPARING A BLANK DISK IDEDOS 0.90, February 24, 2019

other partitions.
Take care not to destroy the CFS signature in the boot sector when

installing other systems!

42

IDEDOS 0.90, February 24, 2019 USING PARTITIONS

5

5 Using partitions

When using a new disk at least one partition must be created. Parti-
tions provide the highest level of organizing data. Each partition has
it’s own filesystem, so possible disk or software errors can’t destroy
the whole data at once.

It’s not recommended to create only one huge 80 GiB partition for
all data (which won’t be more than a few GiB I guess), because the
filesystem checking of such a big partition will take a while. . . Also
it’s not necessary to partition all space on disk, as it’s possible to
create additional partitions later if needed.

One can select the default partition on boot, set the global disk
label, partition names and partition attributes (hidden and read only)
with the CFSfdisk utility. The read only attribute is useful to prevent
accidental changes to the partition.
Examples:

Listing available partitions. ‘∗’ indicates default partition, ‘<’ in-
dicates read only partition. Hidden partitions are not listed.

@$=P
255 "SOCI'S DISK " IDE64
1 "STUFF" CFS
2 "WORK" *CFS
3 "INCOMING" CFS
4 "BACKUP" CFS<
4 PARTITIONS.
READY.
²

Selecting partition 4 as working partition:

@CP4
02, PARTITION SELECTED,004,000,000,000

READY.
²

43

5

USING PARTITIONS IDEDOS 0.90, February 24, 2019

Selecting partition 1 as working partition the other way:

open 15,12,15,"cP"+chr$(1):close15

ready.
²

Load a file from partition 2 from the directory ‘/GT’. More about
paths in section “6.1 Paths”.

LOAD"2//GT/:FILE"

SEARCHING FOR 2//GT/:FILE
LOADING $0801-$0932
READY.
²

44

IDEDOS 0.90, February 24, 2019 USING DIRECTORIES

6

6 Using directories

A directory is a list of files. To view the directory use LOAD"$" and
LIST, DIR, or @$. Of course LOAD will overwrite the current program
in memory, while the last 2 methods will preserve the computer’s
memory content.

The number before the first line is the partition number, it’s fol-
lowed by the directory label, and finally the ID string IDE64. The
following lines provide information about the size of each file in 256
byte blocks (so 4 blocks are exactly 1 KiB), the name of the file en-
closed in quotation marks, and it’s file type at the right side. The last
line is the used block count in the directory. This can be set to be
always ‘32767 BLOCKS FREE.’ for compatibility with certain soft-
ware.

Example:

A simple directory list, using LOAD"$":

LIST

2 "TEST " IDE64
0 "PLUGINS" DIR
40 "BOOT" PRG
2 "MAN" USR
5 "TOD" ASM
23 "VIEWER" PRG<
70 BLOCKS USED.
READY.
²

It’s possible to get a bit more detailed directory list, which is sim-
ilar to the first one, but instead of the full filetype, only one letter is
present. Then the timestamp of the file is displayed as month, day,
hour, minute and the first letter of AM/PM.

Example:

45

6

USING DIRECTORIES IDEDOS 0.90, February 24, 2019

Letter Short Filetype

- DEL Deleted entry
S SEQ Sequential file
P PRG Program file
U USR User file
R REL Relative file
D DIR Directory
L LNK Link
? Other, user defined

Table 2: Detailed directory filetypes

A detailed directory list, using LOAD"$=T":

LIST

2 "TEST " IDE64
0 "PLUGINS" D 10/14 08.16 P
40 "BOOT" P 11/11 07.39 P
2 "MAN" U 11/15 09.48 A
5 "TOD" ? 09/12 10.55 A
23 "VIEWER" P 07/14 07.26 P
70 BLOCKS USED.
READY.
²

There’s an even more verbose directory listing mode with dates,
which includes the full filetype, the protection flag, and the modifica-
tion year too.
Example:

A more detailed directory list, using LOAD"$=T*=L":

LIST

2 "TEST " IDE64
0 "PLUGINS" DIR 10/14/04
08.16 PM

46

IDEDOS 0.90, February 24, 2019 USING DIRECTORIES

6

40 "BOOT" PRG 11/11/04
07.39 PM

2 "MAN" USR 11/15/04
09.48 AM

5 "TOD" ASM 09/12/04
10.55 AM

23 "VIEWER" PRG< 07/14/04
07.26 PM

70 BLOCKS USED.
READY.
²

Putting a few hundred files in one long directory is not an optimal
way of organizing data, so IDEDOS provides subdirectories.

Subdirectories look like normal files with file type DIR in directory
listings. Directories are organized into a tree like structure starting
from the root directory.

The root directory is the top level directory, it’s parent directory
is itself. After boot this directory is selected as the working directory.

The working directory is the directory which is used when no path
is given in the filename just like in LOAD"$".

Managing directories are done via channel #15 commands, but
these examples will use the DOS Wedge to simplify things. (These
commands are described in detail in section “15.6 Directory handling
commands”)
Examples:

Creating a subdirectory:

@MD:DIRNAME

Changing the working directory:

@CD:DIRNAME

Changing the working directory to the parent directory:

47

6

USING DIRECTORIES IDEDOS 0.90, February 24, 2019

@CD¬
@CD:..

Changing the root directory:

@CR:DIRNAME

Removing an empty subdirectory:

@RD:DIRNAME

Changing the name of a subdirectory:

@R:NEWNAME=OLDNAME

Moving a subdirectory tree into a different directory:

@R/NEWPATH/:NEWNAME=/OLDPATH/:OLDNAME

Changing the directory’s label:

@R-H:NEWHEADER

Write protecting a directory against modifications:

@L:DIRNAME

Hiding a directory:

@EH:DIRNAME

48

IDEDOS 0.90, February 24, 2019 USING DIRECTORIES

6

6.1 Paths

Each file in the tree structure can be reached with a “path”. The path
is composed from the name of the directories separated by a slash
character.

Here’s an example directory structure:

ROOT-DIR
°¦±

° ¦ ±
A B C
¦ ° ±
¦ ° ±
F E D

Let’s say the working directory is ‘C’ now. To load a file from
directory ‘E’ use the following: LOAD"/E/:FILE". This is a relative
path. It’s also possible to specify the location of a file from the root
directory, it’s called absolute path: LOAD"//C/E/:FILE". As it seems the
path is enclosed between 2 slashes before a semicolon, after it is the
name of file. In the last example the real path was ‘/C/E’ where the
slash before ‘C’ indicates the it’s an absolute path.

Now let’s compose a relative path, but now our working directory
is ‘F’: LOAD"/../../C/E/:FILE". There’s no directory named ‘..’ in the
graph, as this is a special directory, and it means the parent directory.
That’s why ‘CD:..’ means change to parent directory in some previous
example. There’s another special directory called ‘.’ which means
the directory itself. These two special directories always exists.

To embed the partition number into the filename place it before
the path, e.g. ‘13/C/:E’, and don’t forget to include the colon!

10 OPEN 15,12,15

20 PRINT#15,"CD//":REM GOTO ROOT -DIR

30 PRINT#15,"MD:A":REM CREATE A

49

6

USING DIRECTORIES IDEDOS 0.90, February 24, 2019

40 PRINT#15,"MD/A/:F":REM CREATE F

50 PRINT#15,"MD:B":REM CREATE B

60 PRINT#15,"CD:B":REM ENTER B JUST FOR FUN

70 PRINT#15,"MD//:C":REM CREATE C

80 PRINT#15,"MD//C/:E":REM CREATE E

90 PRINT#15,"MD/../C/./E/../:D":REM CREATE D ;-)

100 CLOSE 15

Listing 1: The directory structure above can be created by this program

6.2 Wildcards

It’s possible to filter directory listings to show only a subset of files
in a directory by using wildcards. There are 2 different wildcards:
‘?’ matches exactly one character, while ‘∗’ matches any number of
characters. These wildcards can be used in path elements or filename
too, in this case the first filename will be matched. To filter direc-
tory listing by file type, append ‘=TYP’ to the pattern. The follow-
ing one character file type shortcuts are recognized: P→PRG, S→SEQ,
U→USR, R→REL, J→LNK, D→DEL, B→DIR.

Wildcard filtering does only work on formatted directory lists
(secondary address 0).

Examples:

List files starting with ‘A’:

LOAD"$A*"

SEARCHING FOR $A*
LOADING $0801-$08DF
READY.
LIST

1 "PICTURES " IDE64
132 "ALIEN BAR BY WEC" FUN
29 "ALIEN-LIFE BY MB" SHI

50

IDEDOS 0.90, February 24, 2019 USING DIRECTORIES

6

132 "ALLEY BY MIKE" FUN
132 "ANGEL BY FZ" FUN
72 "ARNIE BY AMN" DRL
497 BLOCKS USED.
READY.
²

List files ending with ‘DEPACKER’:

@$*DEPACKER

1 "UTILITIES " IDE64
9 "DMC 5.0 DEPACKER" PRG
10 "DMC 5.1 DEPACKER" PRG
19 BLOCKS USED.
READY.
²

List files containing ‘PLAYER’:

@$*PLAYER*

1 "UTILITIES " IDE64
0 "MUSIC PLAYER" DIR
9 "CD PLAYER 1" PRG
12 "CD PLAYER 3" PRG
12 "CD PLAYER 4" PRG
77 "CUBIC PLAYER" PRG
110 BLOCKS USED.
READY.
²

List 4 character long filenames:

@$????

1 "UTILITIES " IDE64
0 "DEMO" DIR
0 BLOCKS USED.
READY.
²

List files starting with ‘K’ and file type ‘D64’:

@$K*=D64

1 "DEMOS " IDE64

51

6

USING DIRECTORIES IDEDOS 0.90, February 24, 2019

683 "KJU" D64
683 "KRESTAGE 2" D64
768 "KRESTOLOGY 1" D64
768 "KRESTOLOGY 2" D64
683 "KRESTOOLS" D64
3585 BLOCKS USED.
READY.
²

6.3 Raw directory access

Ever wondered how to access creation date or attributes of files just
like the BASIC command LL command does? It’s done by using raw
directory access!

Raw directory access gives low level access to the filesystems di-
rectory structure, so it’s format is not uniform across drives.

To open a raw directory channel, use secondary address 2–14. The
first character for IDE64 drives is always ‘I’ ($49). Then the 32 byte
directory entries follow, in format of the CFS filesystem’s directory
entry layout. The end of list can be detected by the status variable.
(6th bit set, End Of File)

52

IDEDOS 0.90, February 24, 2019 USING FILES

7

7 Using files

Files store programs and data in a filesystem. Traditionally files could
only be accessed sequentially like on tape, but later relative files ap-
peared with fixed record lengths on disk drives.

Using IDEDOS with the CFS filesystem it’s now possible to use
randomly accessible files up to 4 GiB without the fixed record length
limitation for both read and write at the same time.

Unlike other systems it’s possible to seek beyond the end of a file
when writing or modifying and create “holes”, which are filled with
nulls between the file’s last end and the newly written data. These
holes of course do not use any disk space. This concept also applies
to relative files for it’s unused records, but instead of nulls the empty
record pattern is used.

Relative files are available for compatibility reasons, they are lim-
ited to the usual 65535 records of 255 bytes, nearly ∼16 MiB.

There’s also a special purpose file called link, which can be used
to reference other files. It contains a path to a new location.

At maximum there can be 32 files open instead of the normal
10 supported by the KERNAL. (this includes all files, even on non-
IDE64 drives) IDEDOS has 10 buffers for it’s own files, these are
shared between the IDE64 drives.

Of course IDEDOS supports opening of multiple files on the same
or different partitions simultaneously for writing and modifying. But
keep in mind that each file locks a 2 MiB area of the partition it’s
located on, which means that on partitions smaller than 2 MiB (like on
a 1.44 MB disk) there can be only one file opened for write at the same
time, and the next file open for write, modify or create (including
directories) will fail with a disk full error. File scratches or directory

53

7

USING FILES IDEDOS 0.90, February 24, 2019

removes will work as these are handled specially in this case. You’ll
won’t ever notice this disk area locking on a big partition except when
it’s nearly full.

All open files are locked, so they cannot be moved across direc-
tories or removed until they are not closed. This applies to directo-
ries too, the current working directory cannot be removed even if it’s
empty. Opening the same file several times is not allowed as well.

When creating new files, the default attributes will be deletable,
readable, writable, loadable, and not hidden, except for relative files,
which will be non-loadable. The directory, partition and the disk must
be writable where the file is created, and the file must be deletable if
replaced.

Wildcards (‘?’ and ‘∗’) and special characters like ‘:’, ‘,’ and ‘=’
are not allowed in filename when creating a new file or directory. The
‘/’ is treated as a path separator for backwards compatibility, unless
it’s disabled in the setup, then it’s just a regular character. The file
type must be at least two characters long, with the same limitations
on usable characters, plus it can’t contain space, ‘>’ and ‘<’. The
following one character file type shortcuts are recognized: P→PRG,
S→SEQ, U→USR, L→REL, J→LNK, D→DEL.

IDEDOS properly closes it’s files when CLALL is called to reduce
the chance of creating non-closed files. (this happens when issuing a
RUN, CLR, NEW, or just entering a new BASIC line) Also non-closed
files do not automatically mean lost sectors, unless huge amounts of
data has been written to the file without closing it.

In the format descriptions everything between ‘[’ and ‘]’ is op-
tional, and ‘〈name〉’ means a parameter.

54

IDEDOS 0.90, February 24, 2019 USING FILES

7

7.1 SAVE

The BASIC command SAVE (and the similar KERNAL call) has the
following format:
Format:
SAVE"[[@][〈partition #〉][〈path〉]:]〈fname〉[,〈type〉]"[,〈device #〉[,〈mode #〉]]

The device number identifies the drive. There’s a nice table at
page 130 which lists valid device numbers. If no device number is
given, then the last one is used ($BA).

The mode parameter does not matter, except for datassette, where
bit 0 disables the relocation on loading, and bit 1 means write end of
tape marker.

The file name and type can’t contain any special characters. If no
filetype is specified then ‘PRG’ is used. The specified file shouldn’t
exists, unless replace is used (@), in this case it’s possible to use
wildcards.

NOTE

Unlike other drives IDEDOS first removes the original file before
replacing it.

Examples:
Simple save into current drive, current partition and into working

directory, the result is ‘A’ with file type ‘PRG’.

SAVE"A"

This will save file ‘B’ with file type ‘DAT’ on device 12 to partition
3 to directory ‘/A’. If it’s exists it will be first removed.

55

7

USING FILES IDEDOS 0.90, February 24, 2019

SAVE"@3//A/:B,DAT",12

This will overwrite the first file in working directory beginning
with ‘A’. File type is not changed. Wildcards are only allowed if re-
place is used! (‘@:’)

SAVE"@:A*"

7.2 LOAD, VERIFY

The BASIC commands LOAD and VERIFY have the following format:

Format:

LOAD"[[〈part #〉][〈path〉]:]〈fname〉[,〈type〉]"[,〈device #〉[,〈mode #〉]]
VERIFY"[[〈part #〉][〈path〉]:]〈fname〉[,〈type〉]"[,〈device #〉[,〈mode #〉]]

The file must be loadable. (the executable flag must be set) For
directory list load the directory must be readable. If no filetype is
specified then ‘∗’ is used.

The device number identifies the drive. If no device number is
given, then the last one is used ($BA).

If mode=0 then load to BASIC program start, otherwise load to
original address. If no mode is given, it’s 0.

Examples:

Simple load from current drive, current partition and from work-
ing directory. As file type is not specified the first will be loaded. The
starting address will be ignored. (no mode specified means mode=0)

LOAD"A"

56

IDEDOS 0.90, February 24, 2019 USING FILES

7

This will load file ‘B’ with file type ‘PIC’ from device 13 from
partition 4 from directory ‘/A’. It will be loaded to the load address
included in file (first 2 bytes), because mode6=0.
LOAD"4//A/:B,PIC",13,1

This will load the directory listing containing only ‘PRG’ files as a
BASIC program.
LOAD"$*=P",12

7.3 OPEN

Things are getting complicated here. The usual syntax of OPEN is as
follows:
Format:
OPEN 〈file #〉[,〈device #〉[,〈channel #〉[,"〈text〉"]]]

The file number identifies a file for IDEDOS, it must be in the
range 1–127. If it’s 128–255 then BASIC adds a CHR$(10) after each
line. (it’s an extra linefeed for certain printers)

The device number identifies the drive. If no device number is
given, then the last one is used ($BA).

The channel number identifies the communication channel for the
drive assigned to a certain file, so it must be choosen unique per drive.
The available channel numbers are described on page 131. Some
commands use this channel number to identify the file. (like the po-
sition command, or direct access commands) If no channel number is
given, then 0 is used for keyboard, tape, RS-232, and 255 for screen,
serial and IDE64 drives.

The open formats presented here can be easily converted to as-
sembly.

57

7

USING FILES IDEDOS 0.90, February 24, 2019

7.3.1 Opening a direct channel

The usage of direct channel is described in section “8 Direct access”
in detail. The format of open is:
Format:
OPEN 〈file #〉,〈device #〉,〈2–14〉,"#"

Reading the last byte of the buffer will set the end of file bit in ST.

7.3.2 Opening a formatted directory list

Formatted directory list is a list of files in a directory formatted as a
BASIC program.
Format:
OPEN 〈file #〉,〈device #〉,0,"$[〈partition #〉]"
OPEN 〈file #〉,〈device #〉,0,"$[[〈part #〉][〈path〉]:][〈pattern〉]"

Reading the last byte of the directory list will set the end of file
bit in ST.

10 OPEN 2,12,0,"$":GET#2,A$,A$

20 GET#2,A$,A$:IF ST THEN CLOSE 2:END

30 GET#2,A$,B$:REM SIZE

40 PRINT ASC(A$+CHR$ (0))+ ASC(B$+CHR$ (0))*256;

50 GET#2,A$:PRINT A$;:IF A$ THEN 50

60 PRINT:GOTO 20

Listing 2: This small program prints the directory list

7.3.3 Opening a raw directory list

Similar to the formatted directory, but gives all possible information
about a file. It’s not drive independent.

58

IDEDOS 0.90, February 24, 2019 USING FILES

7

Format:

OPEN 〈file #〉,〈device #〉,〈2–14〉,"$"

Reading the last byte of the directory list will set the end of file
bit in ST.

7.3.4 Opening a regular file for read

One way is to use secondary address 0, which means read only se-
quential access.

If read only random access is required, then the secondary ad-
dress 2–14 must be used. The read operation is requested by the ‘,R’
after the filetype or file name, it’s usage is optional. If no filetype is
specified then ‘∗’ is used.

Format:

OPEN 〈file #〉,〈device #〉,0,"[[〈part #〉][〈path〉]:]〈fname〉[,〈type〉]"
OPEN 〈file #〉,〈device #〉,〈2–14〉,"[[〈part #〉][〈path〉]:]〈fname〉[,〈type〉][,R]"

The opened file have to be readable and must exists.

0 OPEN 15,12,15: CLOSE 15

5 IF ST THEN PRINT"DEVICE NOT PRESENT":END

7 OPEN 15,12,15

10 OPEN 2,12,0,"FILE ,PRG":N$=CHR$ (0)

20 GET#2,A$,B$:S=ST:REM SAVE STATUS

30 INPUT#15,A,A$,B,C,D,E:IF A=0 THEN 50

40 PRINT"DISK ERROR:"A;A$;B;C;D;E:GOTO 90

50 IF S=66 THEN PRINT"TOO SHORT!":GOTO 90

60 IF S=64 THEN PRINT"START ONLY?":GOTO 80

70 IF S THEN INPUT#15,A,A$,B,C,D,E:GOTO 40

80 PRINT"START:"ASC(A$+N$)+ASC(B$+N$)*256

90 CLOSE 2:CLOSE 15

59

7

USING FILES IDEDOS 0.90, February 24, 2019

Listing 3: This small program prints the starting address of a file, and has
some nice error checking.

7.3.5 Creating or replacing a regular file

If only one output file with write only sequential access is required,
then the simplest is to use secondary address 1. In this case if the
filetype is not specified then ‘PRG’ is used.

If write only random access is required, then the secondary ad-
dress 2–14 must be used. The write operation is requested by the ‘,W’
after the filetype or file name. If the filetype is not specified then ‘SEQ’
is used.
Format:

OPEN 〈file #〉,〈dev #〉,1,"[[@][〈part #〉][〈path〉]:]〈fname〉[,〈type〉]"
OPEN 〈file #〉,〈dev #〉,〈2–14〉,"[[@][〈part #〉][〈path〉]:]〈fname〉[,〈type〉],W"

The file name and type can’t contain any special characters. If no
filetype is specified then ‘SEQ’ is used. The specified file shouldn’t
exists, unless replace is used (@), in this case it’s possible to use
wildcards.

NOTE

Unlike other drives IDEDOS first removes the original file before
replacing it.

10 OPEN 2,12,1,"@:FILE ,SEQ"

20 PRINT#2,"HELLO";

60

IDEDOS 0.90, February 24, 2019 USING FILES

7

30 IF ST THEN PRINT"ERROR DURING WRITE"

40 CLOSE 2

Listing 4: This small program creates a sequential file and writes to it.

7.3.6 Opening a regular file for append

Appending to a file means write only random access starting from the
end of the file. The append operation is requested by the ‘,A’ after the
filetype or file name. If no filetype is specified then ‘∗’ is used.

Format:

OPEN 〈file #〉,〈dev #〉,〈2–14〉,"[[〈part #〉][〈path〉]:]〈fname〉[,〈type〉],A"

The file must be read and writable, and must exists.

7.3.7 Opening a regular file for read and write

If a file have to be both read and writable with random access use
this opening mode. This operation is requested by the ‘,M’ after the
filetype or file name. If no filetype is specified then ‘∗’ is used.

Format:

OPEN 〈file #〉,〈dev #〉,〈2–14〉,"[[〈part #〉][〈path〉]:]〈fname〉[,〈type〉],M"

The file must be read and writable, and must exists.

7.3.8 Opening a relative file for read and write

For compatibility IDEDOS provides “relative files”. These are fixed
record length read and writable files. The record length can be in
range 1–255, and maximum of 65535 records are supported. For

61

7

USING FILES IDEDOS 0.90, February 24, 2019

opening relative files the filetype ‘L’ have to be used. When creat-
ing the file for the first time the record length must be added after the
filetype, as shown below.

Format:

OPEN 〈file #〉,〈dev #〉,〈2–14〉,"[[〈part #〉][〈path〉]:]〈fname〉,L,"+
CHR$(〈record length #〉)

OPEN 〈file #〉,〈dev #〉,〈2–14〉,"[[〈part #〉][〈path〉]:]〈fname〉,L"

IDEDOS initializes all 65535 records with a CHR$(255) character
on creation, but fortunately these records do not waste any disk space,
as only those will be really allocated which are actually used. Non-
IDE64 drives may not initialize all records, so it’s not a bad idea to
write a CHR$(255) into the highest record number when creating the
file. Using a record size of 255 or 1 will most likely work only on
IDEDOS, but nowhere else.

At most the “record size” number of characters can be written into
a record, attempting to write more will result in an error message, and
characters will be dropped. Calling CLRCHN after writing data will
move to the next record. (this means everything have to be written in
one PRINT# statement for BASIC programmers, as normally)

When reading back a record the end of file bit in ST will be set on
the last character of a record. You have to call CLRCHN after EOF to
move to the next record. This is automatic in BASIC.

Selecting a record is done through the command channel with the
position command, this is described in section “15 Command chan-
nel” in detail.

Written records are cached in memory. Do not forget to select a
record or close the file to force unwritten data to disk. This is also
important for CBM and other drives!

62

IDEDOS 0.90, February 24, 2019 USING FILES

7

10 INPUT"SOURCE DRIVE";S

20 INPUT"SOURCE NAME";S$

30 INPUT"DESTINATION DRIVE";D

40 INPUT"DESTINATION NAME";D$

50 OPEN 2,S,2,S$+",L":OPEN 15,S,15:A=128:R=0

60 PRINT#15,"P"CHR$ (2) CHR$ (1) CHR$ (0) CHR$(R+A)

70 INPUT#15,C:IF C=0 THEN R=R+A

80 A=A/2:IF A>=1 THEN 60

90 OPEN 3,D,3,D$+",L,"+CHR$(R)

100 PRINT#15,"P"CHR$ (2) CHR$ (1) CHR$ (0) CHR$ (1)

110 A$=""

120 GET#2,B$:A$=A$+B$:IF ST=0 THEN 120

130 INPUT#15,C:IF C=0 THEN PRINT#3,A$;:GOTO 110

140 CLOSE 3:CLOSE 2:CLOSE 15

Listing 5: This small program copies a relative file. The record length and
number of records are automatically detected.

7.3.9 Creating and replacing a link

A link is a small file containing a path to another file or directory.
For creating link files the filetype ‘J’ or ‘LNK’ have to be used, other-
wise the referenced file will be opened. It’s important to not have a
CHR$(13) after the link, so watch out for the semicolon after PRINT#.
When referencing a link, it’s name is replaced by the links content.

Format:

OPEN 〈file #〉,〈device #〉,1,"[[@][〈part #〉][〈path〉]:]〈fname〉,J"
OPEN 〈file #〉,〈device #〉,1,"[[@][〈part #〉][〈path〉]:]〈fname〉,LNK"
OPEN 〈file #〉,〈device #〉,〈2–14〉,"[[@][〈part #〉][〈path〉]:]〈fname〉,J,W"
OPEN 〈file #〉,〈device #〉,〈2–14〉,"[[@][〈part #〉][〈path〉]:]〈fname〉,LNK,W"

10 OPEN 2,12,1,"+,J"

63

7

USING FILES IDEDOS 0.90, February 24, 2019

20 PRINT#2,"1// UTILITIES /:+64K TASM ,PRG";

30 CLOSE 2

Listing 6: This small program creates a link in the current directory to ref-
erence ‘+64K TASM,PRG’. This can be handy to start the assembler with ‘£+’
from this directory.

7.3.10 Opening a link for read

For opening link files the filetype ‘J’ or ‘LNK’ have to be used, other-
wise the referenced file will be opened.
Format:
OPEN 〈file #〉,〈device #〉,0,"[[〈part #〉][〈path〉]:]〈fname〉,J"
OPEN 〈file #〉,〈device #〉,0,"[[〈part #〉][〈path〉]:]〈fname〉,LNK"
OPEN 〈file #〉,〈device #〉,〈2–14〉,"[[〈part #〉][〈path〉]:]〈fname〉,J[,R]"
OPEN 〈file #〉,〈device #〉,〈2–14〉,"[[〈part #〉][〈path〉]:]〈fname〉,LNK[,R]"

10 OPEN 2,12,0,"+,J"

20 GET#2,A$:IF ST AND 2 THEN 40

30 B$=B$+A$:IF ST=0 THEN 20

40 PRINT"DESTINATION:"B$:CLOSE 2

Listing 7: This small program reads out a link’s destination

7.3.11 Opening the command channel

The command channel is identified by channel number 15.
Format:
OPEN 〈file #〉,〈device #〉,15[,"〈command〉"]

Reading the command channel returns the status message from
the drive, writing to it will send commands.

64

IDEDOS 0.90, February 24, 2019 USING FILES

7

7.4 CLOSE

An opened file must be closed after use. It’s especially true when
writing new data into a file, where data can be left in the buffer un-
written, so recent changes could be lost forever! For a newly created
file this can mean the entire file, for appended or modified ones the
part beyond the previous end of file, for relative files the recently writ-
ten records, unless they were flushed.

Close only requires a file number.
Format:

CLOSE 〈file #〉

7.5 INPUT#, GET#

These commands are for reading from a file. For more read a BA-
SIC manual, in assembly the calls CHKIN, CHRIN, GETIN, READ and
CLRCHN can be used instead.
Format:

INPUT#〈file #〉,〈variables〉
GET#〈file #〉,〈variables〉

7.6 PRINT#

This command is for writing to a file. For more read a BASIC manual,
in assembly the calls CHKOUT, CHROUT, WRITE and CLRCHN can be
used instead.
Format:

PRINT#〈file #〉[,〈variables, strings〉]

65

7

USING FILES IDEDOS 0.90, February 24, 2019

7.7 CMD

This command is for redirecting output to a file. For more read a
BASIC manual, in assembly the CHKOUT call can be used instead.
Format:

CMD 〈file #〉[,〈variables, strings 〉]

7.8 File operations

File operations like seek, rename, etc. are done with command chan-
nel commands. Please read section “15 Command channel”!

66

IDEDOS 0.90, February 24, 2019 DIRECT ACCESS

8

8 Direct access

By using direct access commands you can read and write any sector of
disk. Common use of direct access commands is to access unknown
filesystems, manage the partition table and to create the filesystem.
It’s also important in disk editor applications.

To use direct access, you need to open 2 channels, one for com-
mands, and one for data. The command channel can be opened with
the usual OPEN 〈lfn〉,〈device〉,15. The data channel is opened simi-
lar to opening normal files, except that the file name must be a hash
sign. (OPEN 〈lfn〉,〈device〉,〈channel〉,"#") The channel number must
be greater than 1. This “file” will be a circular data buffer holding
512 or 2048 bytes depending on the drive used. The end of buffer can
be found by checking the BASIC variable ST.

In the format descriptions everything between ‘[’ and ‘]’ is op-
tional, and ‘〈name〉’ means a parameter.

8.1 Block-read

The block-read command reads the specified sector into the buffer
and sets the buffer pointer to the start of buffer. It can also be used to
get the ATA(PI) device identity information to find out the geometry,
model number, etc. as described in ATA(PI) standards.

8.1.1 Reading from a CHS-ATA drive

Cylinder Head Sector addressing is used for older hard disks.

Format:

67

8

DIRECT ACCESS IDEDOS 0.90, February 24, 2019

"B=R"+CHR$(〈channel #〉)+CHR$(〈head #〉)+
CHR$(〈cylinder bits 8–15 #〉)+CHR$(〈cylinder bits 0–7#〉)+
CHR$(〈sector #〉)

8.1.2 Reading from a LBA-ATA or ATAPI drive

Logical Block Addressing can be used with almost all devices, except
old hard disks.
Format:
"B=R"+CHR$(〈channel #〉)+CHR$(〈64+LBA bits 24–27 #〉)+

CHR$(〈LBA bits 16–23 #〉)+CHR$(〈LBA bits 8–15 #〉)+
CHR$(〈LBA bits 0–7 #〉)

8.1.3 Getting device identity

Format:
"B=R"+CHR$(〈channel #〉)+CHR$(0)+CHR$(0)+CHR$(0)+CHR$(0)

8.2 Block-write

The block-write command writes the buffer content to the specified
sector and sets the buffer pointer to the start of buffer.

8.2.1 Writing to a CHS-ATA drive

Format:
"B=W"+CHR$(〈channel #〉)+CHR$(〈head #〉)+

CHR$(〈cylinder bits 8–15 #〉)+CHR$(〈cylinder bits 0–7 #〉)+
CHR$(〈sector #〉)

68

IDEDOS 0.90, February 24, 2019 DIRECT ACCESS

8

8.2.2 Writing to a LBA-ATA or ATAPI drive

Format:

"B=W"+CHR$(〈channel #〉)+CHR$(〈64+LBA bits 24–27 #〉)+
CHR$(〈LBA bits 16–23 #〉)+CHR$(〈LBA bits 8–15 #〉)+
CHR$(〈LBA bits 0–7 #〉)

8.3 Buffer-pointer

The buffer pointer selects individual bytes in the buffer. Reading and
writing will start on the buffer position and the buffer pointer will be
incremented by the number of bytes read and written.

Format:

"B=P"+CHR$(〈channel #〉)+CHR$(〈position bits 0–7 #〉)+
CHR$(〈position bits 8–15 #〉)

"B-P:"; 〈channel #〉; 〈position bits 0–7 #〉; 〈position bits 8–15 #〉

10 LB=0:REM LB=64 FOR ATAPI OR LBA DEVICE!

20 OPEN 15,12,15: OPEN 4,12,4,"#"

30 AD$=CHR$(LB)CHR$ (0) CHR$ (0) CHR$ (1)

40 PRINT#15,"B=R"CHR$ (4)AD$

50 PRINT#15,"B=P"CHR$ (4) CHR$ (8) CHR$ (0)

60 FOR A=0 TO 15:GET#4,A$:PRINTA$;:NEXT

70 CLOSE 4:CLOSE 15

Listing 8: This example reads in the boot sector and prints out the CFS
identification string from the first sector of disk.

10 OPEN 15,12,15: OPEN 4,12,4,"#"

20 AD$=CHR$ (0) CHR$ (0) CHR$ (0) CHR$ (0)

30 PRINT#15,"B=R"CHR$ (4)AD$

40 PRINT#15,"B=P"CHR$ (4) CHR$ (46) CHR$ (0)

69

8

DIRECT ACCESS IDEDOS 0.90, February 24, 2019

50 PRINT"FIRMWARE REVISION:":B=4: GOSUB 90

60 PRINT"MODEL NUMBER:":B=20: GOSUB 90

70 PRINT#15,"B=P"CHR$ (4) CHR$ (20) CHR$ (0)

80 PRINT"SERIAL NUMBER:":B=10: GOSUB 90

90 CLOSE 4:CLOSE 15:END

100 FOR A=1 TO B:GET#4,A$,B$:PRINT BA;:NEXT

110 PRINT:RETURN

Listing 9: This example prints some information about the drive using the
device identity.

8.4 TOC-read

The Table Of Contents holds additional information about the disc.
The bits of the format parameter are described in Table 3.

The various formats of TOC are not described here, they can be
found in the SCSI-MMC standard.
Format:

"B=T"+CHR$(〈channel #〉)+CHR$(〈format #〉)+CHR$(〈starting track #〉)

8.5 Sub-channel-read

This command can be used to read the current state of audio playing,
the current position, media catalog number, and the ISRC. The bits of
the mode and format parameters are described in Table 4 and Table 5.

For more information read the SCSI-MMC standard.
Format:

"B=S"+CHR$(〈channel #〉)+CHR$(〈format #〉)+CHR$(〈starting track #〉)+
CHR$(〈mode #〉)

70

IDEDOS 0.90, February 24, 2019 DIRECT ACCESS

8

Bit Value Meaning

6–7

0 Formatted TOC
1 Multi-session info
2 Raw
3 Reserved

5 Reserved

2–4

0 Bits 6–7 select format
1 Multi-session info
2 Raw
3 PMA
4 ATIP
5 CD-TEXT

6–7 Reserved

1 0 LBA
1 MSF

0 Unused

Table 3: Bits of TOC format

71

8

DIRECT ACCESS IDEDOS 0.90, February 24, 2019

Bit Value Meaning

7 Unused

6 0 Header only
1 Sub channel information

2–5 Unused

1 0 LBA
1 MSF

0 Unused

Table 4: Bits of sub-channel read format

Value Meaning

0 Reserved
1 CD current position
2 Media Catalog number (UPC/bar code)
3 International Standard Recording Code

4–255 Reserved

Table 5: Sub-channel read modes

Byte Meaning

0 Reserved
1 Audio status, see Table 7
2 Sub-channel data length high
3 Sub-channel data length low

Table 6: Sub-channel read data header

72

IDEDOS 0.90, February 24, 2019 DIRECT ACCESS

8

Value Meaning

$00 Audio status byte not supported or not valid
$11 Play operation in progress
$12 Play operation paused
$13 Play operation successfully completed
$14 Play operation stopped due to error
$15 No current audio status to return

Table 7: Sub-channel read audio status codes

Byte Meaning

0–3 Sub-channel data header, see Table 6
4 Sub-channel data format code ($01)
5 ADR and control, see Table 9
6 Track number
7 Index in current track

8–11 Absolute CD address in LBA or MSF
12–15 Track relative CD address in LBA or MSF

Table 8: Sub-channel CD current position data format

73

8

DIRECT ACCESS IDEDOS 0.90, February 24, 2019

Bit Value Meaning

4–7 ADR, equals to $1

3 0 Two-channel audio
1 Four-channel

2 0 Audio track
1 Data track

1 0 Digital copy prohibited
1 Digital copy permitted

0 0 Audio without pre-emphasis
1 Audio with pre-emphasis

Table 9: Sub-channel control field of CD current position

74

IDEDOS 0.90, February 24, 2019 THE FILE MANAGER

9

9 The File Manager

The File Manager is a software for copying, deleting, renaming, mak-
ing directories, and starting programs. Working with this program is
very easy. It can be started from BASIC by typing MAN. Note that it
will overwrite the current program in memory.

The screen is divided into two parts called “panel”s, each contain-
ing a directory listing, with the maximal number of displayable files
of 510/panel. The black line is the file selector, which can be moved
by the CRSR and Fx keys. Selecting the active panel is done by the
CONTROL key.

The right side of each panel shows the sum of selected files block
count, the number of selected files, the used blocks in directory (or
the number of free blocks on disk) and the device number with the
current partition.

The current directory path is displayed on the top of screen, while
the drive type and disk label is on top of each panel. The directories
and files are displayed with different color for easier recognition.

To change the current drive of a panel press the C= key together
with a number key, and it will select drives 10, 11, . . . , 17, 8, and 9.
Directory reload is done with the 1 key in case of disk change.

Tagging files for operations with multiple files is done with the
DEL key, the selected files will be highligted. The + key selects and
the − deselects all matching filenames for the given pattern. The key
∗ inverts the current selection. These three keys can be combined with
SHIFT to include directories too.

Copying files can be done with key 5, while deleting is done with
8. Both operations can work on multiple files and on subdirectories.
If no files are selected then copying and deleting will operate on the

75

9

THE FILE MANAGER IDEDOS 0.90, February 24, 2019

file where the selector currently is. File rename is done with the 6 key,
this can also change the filetype on IDE64 drives. Directory creation
is done with the key 7.

To send commands to ordinary disk drives (e.g. for formatting or
validating a disk) press 9.

To jump quickly on a file press it’s first letter. (alphabetic charac-
ters only)

There’s also a shortcut to eject the disc from a CD-ROM, DVD,
LS-120 or Zip drive by pressing the ↑ key. Reloading of the disc is
automatically done when reloading the directory. To exit to BASIC
press←.

Entering directories and loading files are done with the RETURN
key. If a file is associated with a plugin then the plugin will be started
instead. Going into the parent directory is done by pressing RETURN
on the directory entry ‘..’. Or you can also use the ‘.’ key for entering
the parent directory and key ‘/’ to enter the root directory.

Partition selection is similar like entering the parent directory, but
you have to be in the root directory. (press key ‘/’ and then ‘.’ to
quickly reach it) The partition selection directory can be identified by
the partition number 255 displayed on the side. (and of course there’s
no ‘..’ entry)

The manager remembers the last used directories, partitions and
device numbers across invocations unless the computer is turned off.

If you do not like the default colors then it’s possible to change it
in the setup utility. If you do not like the lowercase character set (e.g.
want to look at a nice directory art), use the well known C= + SHIFT
combo.

Files are unsorted for 1541, 1570, 1571, 1581 while any other
drive will have it’s directory displayed alphabetically, and directories

76

IDEDOS 0.90, February 24, 2019 THE FILE MANAGER

9

will be sorted to the top. Do not put more than 510 files in a directory
or the rest will not be displayed.

In an input window (e.g. when renaming a file) you can use the
CRSR keys, HOME, CLR, INS and DEL keys. Aborting is done with
the STOP key, while finishing the input is done with RETURN.

For question windows with multiple selections (e.g. YES/NO/ALL)
press the first letter of your choice. Simple message windows will
accept any key. If you hold down the key long enough, you can see
the window below the message. (e.g. disk error while copying, but
which file had this error?)

The recursive copy operation is not the “ultimate backup tool”, as
it can’t copy relative files, preserve creation or modification date or
file attributes.

Fast copying with a serial bus drive is only possible if it’s sup-
ported by the built in floppy speeder (if enabled) or it’s capable of the
JiffyDOS or Dolphin DOS protocol. Copying between serial drives
will use the normal routines.

9.1 Plugins

External programs called by the file manager can extend it’s func-
tionality in a number of ways. Plugins can show text and various
graphic formats, play SID files and animations, extract archives and
disk images, fire up an assembler with the file, or just anything one
can imagine!

These external programs are started by pressing RETURN, 2, 3 or
4 on a file. The action taken when these keys are pressed is deter-
mined by the file called ‘1//:MAN,USR’. The manager looks for these
files on the system drive which can be set in the setup utility.

77

9

THE FILE MANAGER IDEDOS 0.90, February 24, 2019

Figure 6: The File Manager

9.1.1 Plugin interface

Plugins are machine code files compiled to $1000. A sample source
code can be seen in Listing 10.

The interface is defined as follows:

$1000 When started here it should display some kind of prompt for
getting the filename. Not used by the manager.

$1003 The manager starts the plugins at $1003 with the accumula-
tor loaded with the length of filename, the X register with the
lower, the Y with the higher byte of the address to the filename.
$BA contains the current device number the file is on. The file-
name always includes the file type separated by a comma on
the end.

78

IDEDOS 0.90, February 24, 2019 THE FILE MANAGER

9

*= $1000

jmp printc
jmp start

txt .text 13,"filename:",0

printc lda #<txt
ldy #>txt
jsr $ab1e ;print prompt
ldy #255

oqu iny
jsr $ffcf ;get input
sta $200,y
cmp #13
bne oqu
tya ;setup fake manager
ldx #<$200 ;filename parameter
ldy #>$200

start jsr $ffbd ;setup filename
lda #filenumber ;file number (1-255)
ldx $ba ;actual device number
ldy #secaddy ;secondary address
jsr $ffba
jsr $ffc0 ;open file
... ;play movie
lda #filenumber ;file number (1-255)
jsr $ffc3 ;close file
rts ;done

79

9

THE FILE MANAGER IDEDOS 0.90, February 24, 2019

Listing 10: Plugin sample source

The plugin must not destroy $0002–$0333 badly and must not
modify $0800–$0FFF! Please leave the VIC II, SID, CIA, etc. after
exit of the plugin in a usable state. . .

9.2 Manager configuration file

The configuration file can be found in the root directory of the system
drive and it’s called ‘MAN’ with filetype ‘USR’. The manager only loads
it on the first invocation, so if you want that your changes take affect
immediately, then start the manager as ‘MAN!’.

This file controls the plugin assignment based on powerful wild-
card matching. Each line ends on CHR$(0). The first line contains
the plugin directory, it’s after a fake 2 bytes loading address. The
path must contain the partition number and the full path from the root
directory ending with ‘:’. Then pairs of lines follow, where the first
is the plugins name, and the second the wildcard pattern. An empty
line terminates the file. The special code ‘=’ alone is a key definition
separator.

For the easy creation of the configuration file a BASIC program
is included here in Listing 11.

0 DR=PEEK (186): REM GET LAST USED DRIVE NUMBER

10 OPEN 1,DR ,1,"@1//:MAN ,USR":PRINT#1,"."

20 N$=CHR$ (0): REM NULL SEPARATOR

30 PRINT#1,"1// PLUGINS /:"N$;:REM PLUGIN DIRECTORY

40 REM RETURN KEY SECTION BEGINS

50 PRINT#1,"SID"N$"*,SID"N$;:REM SID PLAYER

55 K$=CHR$ (129)

80

IDEDOS 0.90, February 24, 2019 THE FILE MANAGER

9

60 PRINT#1,"KLA"NK"PIC ? *,PRG"N$;:REM KOALA

70 PRINT#1,"DRL"N$"*.DRL"N$;:REM DRAZLACE

80 PRINT#1,"D64"N$"*,D64"N$;:REM D64 WRITER

100 REM RETURN PRUGINS

500 PRINT#1,"="N$;:REM KEY 2 SECTION BEGINS

510 REM KEY 2 PRUGINS

590 PRINT#1,"MENU"N$"*" N$;:REM MENU

600 PRINT#1,"="N$;:REM KEY 3 SECTION BEGINS

610 PRINT#1,"D64L"N$"*,D64" N$;:REM D64 LISTER

620 REM KEY 3 PRUGINS

690 PRINT#1,"VIEWER"N$"*"N$;:REM VIEWER

700 PRINT#1,"="N$;:REM KEY 4 SECTION BEGINS

710 REM KEY 4 PRUGINS

790 PRINT#1,"VI65"N$"*"N$;:REM EDITOR

800 PRINT#1,N$;:CLOSE 1:REM CLOSE FILE

Listing 11: MAN,USR generator source

The program first opens the configuration file, and removes the
old one if there was any. Also it writes the fake loading address. Line
30 defines ‘/PLUGINS/’ as the plugin directory on partition 1. Line
50 is an example of a filetype matching. All files with filetype ‘SID’
will be played by the ‘1//PLUGINS/:SID’ plugin, when RETURN is
pressed. Line 60 associates all ‘PRG’ type files beginning with ‘APIC’
and a letter between spaces to the Koala painter viewer plugin. Line
70 associates all files ending on ‘.DRL’ to the Drazlace viewer. Line
80 associates all files with filetype ‘D64’ to the d64 writer. Line 500
starts definitions for key 2. Line 590 associates all files to the menu
program, when key 2 is pressed. Line 600 starts definitions for key 3.
Line 610 associates all files with filetype ‘D64’ to the d64 lister. Line
690 associates all files to the viewer program, when key 3 is pressed.
Line 700 starts definitions for key 4. Line 790 associates all files to
the editor program, when key 4 is pressed. In line 800 the end of

81

9

THE FILE MANAGER IDEDOS 0.90, February 24, 2019

definitions marker is written, and then the file is closed.
The pattern matching is case sensitive, so it’s not a bad idea to add

both lowercase and uppercase variants to avoid problems with badly
written CDs.

Save the configuration creator program, in case you want to mod-
ify or add some more plugins to you manager configuration file some-
time later.

82

IDEDOS 0.90, February 24, 2019 THE FILE MANAGER

9

Key Function

← Exit
CONTROL Change panel
UP , DOWN Move cursor
F1 or LEFT Page Up
F7 or RIGHT Page Down
1 Refresh dir
2 , 3 , 4 Execute plugins
5 Copy file(s)
6 Rename file or directory
7 Create directory
8 Delete file(s)
9 Send DOS command
. Go into parent dir
/ Go into root dir
DEL Toggle selection of file
F2 or HOME Go on top of listing
F8 or CLR Go to end of listing

RETURN
Enter directory or LOAD"FILE",X and
RUN or start viewer plugin

SHIFT + RETURN LOAD"FILE",X,1
↑ Eject medium
∗ Invert file selection (SHIFT to include dirs)
+ Select files (SHIFT to include dirs)
− Deselect files (SHIFT to include dirs)
C= + 0–9 Select drive
C= + SHIFT Select character set
A–Z Quick jump to filename

Table 10: Manager keys

83

9

THE FILE MANAGER IDEDOS 0.90, February 24, 2019

84

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

10 Using the monitor

The monitor is designed to be fast and simple, while also powerful
for debugging and fixing. It’s possible to edit every single byte in
memory and I/O space without conflicting with internal variables of
the monitor itself.

Illegal opcodes are supported in the C64 version, 65816 opcodes
(emulation mode only) in the SuperCPU version.

The radix for all numbers and addresses is hexadecimal (the ‘$’
prefix is optional).

In syntax descriptions everything between ‘[’ and ‘]’ is an optional
parameter, while ‘〈’ and ‘〉’ means a required parameter.

10.1 Starting the monitor

The monitor is started by hitting C= + RESTORE at the same time,
or by executing a BRK instruction, or pressing LEFTSHIFT + RESET,
or alternatively by using the command SYS 0. If C128 keyboard is
enabled it’s possible to use HELP to start the monitor.

To use the monitor like a real freezer monitor you must make
sure that the NMI vector ($318) won’t get overwritten in RAM. If it’s
OK, press C= + RESTORE to freeze the program. The chip states,
processor registers and memory are preserved.

To recover from died monitor (not very likely) press LEFTSHIFT
+ RESET. Memory won’t get distorted.

To rip from games, demos, etc. press LEFTSHIFT + RESET while
the program is running. (not a real freezer, but at least it’s possible to
rip IFLI pictures. . .)

85

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

Figure 7: The IDE64 builtin monitor

10.1.1 Ripping on C64

A few bytes from stack ($1F3–$1FF), the contents of both CIAs, the
memory configuration at $00, $01 and the processor registers (A, X,
Y, SR, SP) will be lost, otherwise the memory is not touched. (ADDR
will not have a valid restart address, instead it contains $FCE2)

10.1.2 Ripping on SuperCPU

A few bytes from stack ($1F3–$1FF), the contents of VIC II registers
$D020–$D02E, and zero page addresses $99, $9A will be lost, other-
wise the memory is not touched. Due to end of stack corruption you
may have problems with the restarted program. (ADDR will have a
valid restart address!) Use SuperCPU reset button, stopping the pro-

86

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

gram for a short time before freeze may be necessary.

10.2 Disk commands

10.2.1 Select work drive

Command: O, @#
Purpose: Selects working drive for disk operations.
Syntax: O 〈drive〉, @#〈drive〉

Device numbers for the ‘O’ command must be entered as hexadec-
imal unless a radix prefix is used.

The ‘@#’ command always requires a decimal number, no radix
prefix is allowed.

The device number is used in all disk access commands. The
default is the system drive’s device number selected in the setup.

Example:

Select device 12.

O C

Select device 13:

@#13

10.2.2 DOS command

Command: @
Purpose: Read error channel and send DOS commands.
Syntax: @〈command〉

87

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

Examples:

Print error channel:

@
00, OK,000,000,000,000

Send a DOS command:

@CD:SOURCE
00, OK,000,000,000,000

10.2.3 Directory

Command: @$
Purpose: Display directory of current working drive.
Syntax: @$[〈pattern〉]

Example:

Display directory:

@$T*
2 "TEST " IDE64
13105"TRANCEANDACID"
5 "TOD" ASM
13110 BLOCKS USED.

10.2.4 Save

Command: S and SB

Purpose: Save program to disk and save a memory area to disk.
Syntax: S"NAME" 〈start address〉 〈end〉 [〈start2〉]

SB"NAME" 〈start address〉 〈end〉

88

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

Examples:

Save main file to disk, save sprites as 512 byte raw file without
start address, and save 1024 bytes of data from $3000 with start ad-
dress $2200.

Note that the first parameter is not the device number!

S"GAME" 0801 21FF
OK

SB"SPRITES" 2000 21FF
OK

S"TO2200" 3000 33FF 2200
OK

10.2.5 Load

Command: L and LB

Purpose: Load a program or memory area from disk.
Syntax: L"NAME" [〈start address〉]

LB"NAME" 〈start address〉

Examples:

Load the main program from disk, and link in sprite data, which
is a 512 byte raw file without start address.

Note that the first parameter is not the device number!

L"GAME"
0801-21FF OK

LB"SPRITES" 2200
2200-23FF OK

89

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

10.2.6 Verify

Command: V and VB

Purpose: Verify a program or memory area from disk.
Syntax: V"NAME" [〈start address〉]

VB"NAME" 〈start address〉

Examples:

Verify the main program from disk, and the sprite data, which is
a 512 byte raw file without start address.

Note that the first parameter is not the device number!

V"GAME"
0801-21FF OK

VB"SPRITES" 2200
2312 2313
2200-23FF OK

10.2.7 Freeze

Command: S

Purpose: Save current machine state to disk.
Syntax: S"NAME"

Freeze (saves 64 KiB RAM and I/O) memory to disk. The actual
bank must be 0–7. See 10.6.1 Bank.

Example:

Freeze memory from disk.

S"MYFREEZE"
OK

90

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

10.2.8 Defreeze

Command: K

Purpose: Restore machine state from disk.
Syntax: K"NAME"

Defreeze memory from disk (loads 64 KiB RAM and I/O). The
actual bank must be 0–7.

Example:

Defreeze memory from disk.

K"MYFREEZE"
0000-FFFF OK

10.3 Display and modify memory

10.3.1 Registers

Command: R

Purpose: Shows the processor registers.
Syntax: R

To modify the registers and flags, change the line beginning with
‘;’, and press RETURN. ADDR is the address where the program con-
tinues (see X!), AC XR YR SP are the Accumulator, X register, Y reg-
ister and Stack pointer, BK is the currently edited bank selector (see
B!), DR is the device number used in disk access commands (see O!),
NV-BDIZC are the processor flags.

Example:

Display registers.

91

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

R
ADDR AC XR YR SP BK DR NV-BDIZC
;E5D1 00 00 0A F3 07 0C 00100010

10.3.2 I/O chip registers

Command: IO

Purpose: Shows the I/O chip registers.
Syntax: IO

This command is a shortcut to quickly display VIC II and CIA
registers.
Example:

Display I/O chip registers.

IO
-D000 00 00 00 00 00 00 00 00
-D008 00 00 00 00 00 00 00 00
-D010 00 1B 37 00 00 00 C8 00
-D018 15 71 F0 00 00 00 00 00
-D020 FE F6 F1 F2 F3 F4 F0 F1
-D028 F2 F3 F4 F5 F6 F7 FC FF

-DC00 7F 00 FF 00 25 40 FF FF
-DC08 00 00 00 01 00 81 01 08

-DD00 C7 00 3F 00 FF FF FF FF
-DD08 00 00 00 01 00 00 08 08

10.3.3 Assemble

Command: A

Purpose: Enter assembly code.
Syntax: A 〈address〉 〈mnemonic〉 [〈operand〉]

Illegal instructions are supported and emulation mode 65816 in-
structions too.

92

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

Examples:
Enter a few assembly instructions.

A1000 EE 20 D0 INC $D020
A1003 4C 00 10 JMP $1000
A1006 B3 30 LAX ($30),Y
A1008 NOP

These are legal instruction entering forms:
A1000 INC D020
A1003 LDA#$3
A1006 NOP:VSFV

10.3.4 Disassemble

Command: D

Purpose: Disassemble machine code into assembly.
Syntax: D [〈address 1〉 [〈address 2〉]]

Pressing RETURN on modified hex bytes or on modified disas-
sembly changes memory. (the cursor position selects what happens)
To slow down listing hold CONTROL, to stop press STOP, to pause
listing press anything else. If the whole screen is filled and you want
to get an empty line then go into the last line and press SHIFT + RE-
TURN. (or clear the screen)
Examples:

Disassembly from last address: D.
Disassembly a few lines: D 1234.
Disassembly continuously forward from: D1234-.
Disassembly continuously backwards from: D-1234.
Disassembly between addresses: D1234-5678.

Simply display memory at $1000.

93

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

D 1000
,1000 EE 20 D0 INC $D020
,1003 4C 00 10 JMP $1000
,1006 B3 30 LAX ($30),Y

10.3.5 Display as hexadecimal

Command: M

Purpose: Dump memory in hex and PETSCII.
Syntax: M [〈address 1〉 [〈address 2〉]]

Press RETURN to enter the modified hex values or PETSCII text
into memory. Possible parameters are the same as for D.
Example:

Display memory from $E478.
M E478
:E478 20 2A 2A 2A 2A 20 43 4F **** CO
:E480 4D 4D 4F 44 4F 52 45 20 MMODORE
:E488 36 34 20 42 41 53 49 43 64 BASIC
:E490 20 56 32 20 2A 2A 2A 2A V2 ****

10.3.6 Display as PETSCII

Command: I

Purpose: Display memory as PETSCII.
Syntax: I [〈address 1〉 [〈address 2〉]]

Press RETURN to enter the modified text into memory. Some
PETSCII values have the same screen code, in this case the original
value is not overwritten, to preserve mixed code. Possible parameters
are the same as for D.
Example:

Display memory from $A0A0.

94

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

i a0a0
'a0a0 DfoRnexTdatAinput¯inpuTdiMreaDle
'a0c0 TgotOruNiFrestorEgosuBreturNreMs
'a0e0 toPoNwaiTloaDsavEverifYdeFpokEpr
'a100 int¯prinTconTlisTclRcmDsySopeNcl

10.3.7 Display as screen code

Command: J

Purpose: Display memory as screen code.
Syntax: J [〈address 1〉 [〈address 2〉]]

Press RETURN to enter the modified text into memory. (I∗ is
available for MK7 addicts) Possible parameters are the same as for
D.
Example:

Display memory from $400.

J 400
.0400
.0420 **** COMMODORE 64 BA
.0440 SIC V2 ****
.0460 64K RAM

10.3.8 Display as binary

Command: EC

Purpose: Display memory as binary.
Syntax: EC [〈address 1〉 [〈address 2〉]]

Press RETURN to enter the modified bytes into memory. ‘.’
means 0, anything else (not a space) is 1. Possible parameters are
the same as for D.
Example:

95

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

Display memory from the character ROM at address $D008.

B 3
EC D008
[D008 ...##...
[D009 ..####..
[D00A .##..##.
[D00B .######.
[D00C .##..##.
[D00D .##..##.
[D00E .##..##.
[D00F

10.3.9 Display as sprite

Command: ES

Purpose: Display memory as sprite.
Syntax: ES [〈address 1〉 [〈address 2〉]]

Press RETURN to enter the modified bytes into memory. ‘.’
means 0, anything else (but not a space) is 1. Possible parameters
are the same as for D.
Example:

Display a sprite from $A00.

ES A00
]0A00
]0A03
]0A06
]0A09
]0A0C
]0A0F
]0A12
]0A15
]0A18#######......
]0A1B##########.....
]0A1E############.....
]0A21#######.....#.....
]0A24########.....#.....
]0A27########......#.....
]0A2A########..#...#.....
]0A2D#######...#..##.....
]0A30##.......#..##.....

96

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

]0A33#...........#.....
]0A36#...........##....
]0A39#....#......#....
]0A3C##...#....#.....

10.3.10 Backtrace

Command: BT

Purpose: Display call trace.
Syntax: BT

Example:

Do a backtrace. $1237, $1233 and $1230 are the caller JSR ad-
dresses, $30 is some pushed data.

A1230 20 33 12 JSR $1233
A1233 20 36 12 JSR $1236
A1236 08 PHP
A1237 20 3A 12 JSR $123A
A123A 00 BRK
A123B

G 1230

BRK EXCEPTION

ADDR AC XR YR SP BK DR NV-BDIZC
;1230 10 00 0A C6 07 0D 00110000
BT
1237 30 1233 1230 7A E3 1009 050E 10

10.4 Execution control

10.4.1 Go

Command: G

Purpose: Execute a routine, and return to monitor.
Syntax: G 〈address〉

97

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

When program terminates it tries to return to monitor with a BRK.
Example:

Start program at $080D.

G 80D

10.4.2 Exit

Command: X

Purpose: Exit monitor and continue execution.
Syntax: X

As the IDE64 monitor is always in freeze mode, exit will con-
tinue the interrupted program. If you want to get back to the BASIC
prompt, use Q.
Example:

Continue program execution at ADDR.

IDE64 MONITOR

ADDR AC XR YR SP BK DR NV-BDIZC
;E5D1 00 00 01 F2 07 08 00100010
X

10.4.3 Quit

Command: Q

Purpose: Return to BASIC prompt from monitor.
Syntax: Q

Example:
Try to exit to BASIC prompt. Useful after hitting a BRK.

98

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

BRK EXCEPTION

ADDR AC XR YR SP BK DR NV-BDIZC
;1230 10 00 0A C6 07 0D 00110000
Q

10.5 Memory area commands

10.5.1 Transfer

Command: T

Purpose: Copy a memory area to another address.
Syntax: T 〈start address〉 〈end〉 〈destination〉

Overlapping areas are supported.

Example:

Copy memory from $400–$7FF to $C00–$FFF.

T 400 7FF C00

10.5.2 Compare

Command: C

Purpose: Compare a memory area with another.
Syntax: C 〈start address〉 〈end〉 〈start2〉

Example:

Compare memory from $2000–$3FFF with $E000–$FFFF.

C 2000 3FFF E000
3FC0 3FC1 3FC2

99

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

10.5.3 Fill

Command: F

Purpose: Fill a memory area with the specified byte.
Syntax: F 〈start address〉 〈end〉 〈fill byte〉

Example:
Fill memory $2–$FFFF with $00.

B 4
F 2 FFFF 0

10.5.4 Hunt

Command: H

Purpose: Search memory for a specific pattern.
Syntax: H 〈start address〉 〈end〉 〈pattern〉

‘?’ is a one character wildcard matching everything.
Example:

Search memory for instructions accessing $277.
H E000 FFFF ? 77 2
E5B4 E5BC EB3C
D E5B4
,E5B4 AC 77 02 LDY $0277
,E5B7 A2 00 LDX #$00
,E5B9 BD 78 02 LDA $0278,X

Search memory for PETSCII text.
H E000 FFFF "COMM"
E47E

Search memory for screen code text.
H 400 800 'COMM'
0431

100

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

10.6 Miscellaneous

10.6.1 Bank

Command: B

Purpose: Select memory configuration and area.
Syntax: B 〈bank〉

Banks 0–7 have the same meaning like the first 3 bits of $01,
banks 8–1E selects the drive’s memory with that device number.

Example:

Select bank 4.

B 4

10.6.2 RAM/ROM

Command: ∗
Purpose: Change between banks 4 and 7.
Syntax: ∗

Example:

Quick switch between RAM and ROM (bank 4 and 7)

ADDR AC XR YR SP BK DR NV-BDIZC
;EAB4 03 03 15 EA 07 08 00100101
*
RAM
R
ADDR AC XR YR SP BK DR NV-BDIZC
;EAB4 03 03 15 EA 04 08 00100101

101

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

10.6.3 Number convert

Command: N

Purpose: Calculate an expression and display the result.
Syntax: N 〈expression〉

The result is displayed in decimal, hexadecimal, binary, screen
code and PETSCII.

Example:

Calculate something.

N $0E00+23*SIN(1)
3603 0E13 0000111000010011 SN SN

10.6.4 View

Command: W

Purpose: Look at screen.
Syntax: W

Example:

Useful for finding the video bank after LEFTSHIFT + RESET.

W

10.6.5 Restore I/O vectors

Command: IV

Purpose: Restore I/O vertors.
Syntax: IV

102

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

Example:

Restore vectors at $314–$333.

IV
OK

10.6.6 Address stack

Command: ←
Purpose: Push addresses to the “address stack”.
Syntax: ← 〈addresses〉

Search for something, then put a ‘←’ before the address list, press
RETURN (push), then list with ‘D↑’, or with something else (pop).
The address stack is 8 address deep only.

Example:

An example using the astack.

H E000 FFFF 20 BA FF
¬E1DD E1F0 E22B E23F E24E
D�
,E24E 20 BA FF JSR $FFBA
,E251 20 06 E2 JSR $E206
,E254 20 0E E2 JSR $E20E
D�
,E23F 20 BA FF JSR $FFBA
,E242 20 06 E2 JSR $E206
,E245 20 00 E2 JSR $E200
D�
,E22B 20 BA FF JSR $FFBA
,E22E 20 06 E2 JSR $E206
,E231 20 00 E2 JSR $E200
D�
,E1F0 20 BA FF JSR $FFBA
,E1F3 20 06 E2 JSR $E206
,E1F6 20 00 E2 JSR $E200
D�
,E1DD 20 BA FF JSR $FFBA
,E1E0 20 06 E2 JSR $E206
,E1E3 20 57 E2 JSR $E257

103

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

10.6.7 Scrolling

Pressing F3 and F5 displays previous and next lines of current display
mode (e.g. disassembly, screencode, etc.) The F1 and F7 keys do the
same, but scroll a half screen on one press.

Real crackers use F2 and F8 for fast code search, and pause with
any key or stop with STOP, as soon as something interesting turns up.
;-)

Example:
Type D FCE2 then hold F3 till the code before $FCE2 appears.

(other keys work similar)

,FCDD D0 02 BNE $FCE1
,FCDF E6 AD INC $AD
,FCE1 60 RTS
,FCE2 A2 FF LDX #$FF
,FCE4 78 SEI
,FCE5 9A TXS
,FCE6 D8 CLD
,FCE7 20 02 FD JSR $FD02

10.6.8 Using freeze points

There’s support for two freeze points and a zeropoint. Unlike other
monitor programs the freeze and zero point instructions are restored
even if they were relocated since, but only the triggered one. In the
C64 version it’s possible to call the monitor with freeze points even
from configurations like 5. (I/O area must be available)

In the next example a freeze point is set at $1000. The SF com-
mand will insert a JSR call to the current location. The original code
will be restored8 when control returns to monitor by the JSR freeze
point. The I/O area must be available to return.

8Only that one will be restored which gets executed.

104

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

D 1000
,1000 SF 20 D0 INC $D020
,1003 4C 00 10 JMP $1000
,1006 B3 30 LAX ($30),Y

SZ will set a zero point (BRK) at $1000. Works similar to the
freeze point, but only one byte long. Of course the I/O area must be
available to return, and the BRK vector must be correct.

D 1000
,1000 SZ 20 D0 INC $D020
,1003 4C 00 10 JMP $1000
,1006 B3 30 LAX ($30),Y

A freeze point or zero point can be restored manually by using the
R command. After pressing RETURN the original code appears, and
F5 can be used to update the following lines on screen.

D 1000
,1000 R0 F7 DE JSR $DEF7
,1003 4C 00 10 JMP $1000
,1006 B3 30 LAX ($30),Y

Key Function

F1 Scroll half screen up
F2 Scroll continuously up
F3 Scroll up
F5 Scroll down
F7 Scroll half screen down
F8 Scroll continuously down
CRSR Cursor move
INS Insert space
DEL Delete before cursor
HOME Cursor to top left

105

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

CLR Clear screen
RVSON, RVSOFF Set or reset inverse mode
RETURN Execute line
SHIFT + RETURN Go to beginning of next line
STOP Stop operation
C= + SHIFT Select character set

Table 11: Monitor editor keys

Command Function

@ [〈command〉] Disk command, status
@$ [〈pattern〉] Directory list
@# 〈decimal number〉 Select work drive

A 〈address〉 〈mnemonic〉 Assemble to machine code
B 〈bank〉 Select memory bank
∗ Select RAM/ROM bank

BT Backtrace
C 〈start〉 〈end〉 〈start2〉 Compare memory
D [〈start〉 [〈end〉]] Disassemble
, 〈start〉 〈hex〉 . . . Enter hex and disassemble

EC [〈start〉 [〈end〉]] Dump as character
[〈start〉 〈binary〉 Enter character data

ES [〈start〉 [〈end〉]] Dump as sprite
] 〈start〉 〈binary〉 Enter sprite data
F 〈start〉 〈end〉 〈fill byte〉 Fill with byte
G 〈address〉 Execute at address
H 〈start〉 〈end〉 〈pattern〉 Search hex/any/text
I [〈start〉 [〈end〉]] Dump in PETSCII

106

IDEDOS 0.90, February 24, 2019 USING THE MONITOR

10

´ 〈start〉 〈text〉 Write PETSCII data
IO Dump I/O registers
− 〈start〉 〈hex〉 . . . Write hex to I/O area
IV Restore I/O vectors
J [〈address 1〉 [〈address 2〉]] Dump in screen code
. 〈start〉 〈text〉 Enter screen code

K "NAME" Defreeze memory
L "NAME" [〈start〉] Load program

LB "NAME" 〈start〉 Load binary data
M [〈start〉 [〈end〉]] Dump in hex and PETSCII
: 〈start〉 〈hex〉 . . . Enter hex or PETSCII data

N 〈expression〉 Conversion and calculator
O 〈number〉 Select work drive
R Show registers
; 〈pc〉 〈ac〉 〈xr〉 . . . Change registers

S "NAME" Freeze memory
S "NAME" 〈start〉 〈end〉 [〈start2〉] Save program

SB "NAME" 〈start〉 〈end〉 Save binary data
T 〈start〉 〈end〉 〈destination〉 Copy memory
V "NAME" [〈start〉] Verify program

VB "NAME" 〈start〉 Verify binary data
W Look at screen
X Continue program
Q Exit to BASIC warm start
← 〈address〉 〈address〉 Push address(es) to astack
↑ Pop address from astack

Table 12: Monitor commands

107

10

USING THE MONITOR IDEDOS 0.90, February 24, 2019

108

IDEDOS 0.90, February 24, 2019 DOS WEDGE

11

11 DOS Wedge

These are one or two character long commands to speed up some
frequently typed command at the BASIC prompt. Enable or disable
this feature in the setup utility under “3.1.7 Use DOS wedge”.

11.1 @ – DOS command

It sends the command string (if any) to the last used device and then
prints the error channel message.
Examples:

Print error channel:
@
00, OK,000,000,000,000

READY.
²

Delete a file:
@S:MYFILE
01, FILES SCRATCHED,001,000,000,000

READY.
²

11.2 @# – select device

Selects the specified device as last used device.
Example:

Select device 8:
@#8

READY.
²

109

11

DOS WEDGE IDEDOS 0.90, February 24, 2019

11.3 @$ – list directory

Display directory without affecting memory
Example:

List ‘PRG’ files beginning with ‘S’ ending with ‘.DRL’.
@$S*.DRL=P

1 "TEST " IDE64
33 "SHUDDER.DRL" PRG
33 BLOCKS USED.
READY.
²

11.4 / – load BASIC program

Loads a BASIC file, like ‘LOAD"FILE",〈current device〉’.
Example:

To load a program from directory listing:
@$

1 "TEST " IDE64
0 "PLUGINS" DIR
132 "2 PLANETS BY" FUN
45 "DRAZPAINT 2.0" PRG
/1 "DRAZLACE V1.0" PRG
64 "TASM" PRG
33 "SHUDDER.DRL" PRG
315 BLOCKS USED.
READY.

SEARCHING FOR DRAZLACE V1.0
LOADING $0801-$3023
READY.
²

11.5 % – load assembly program

Loads an assembly file, like ‘LOAD"FILE",〈current device〉,1’, but does
not restart program if used in BASIC program.

110

IDEDOS 0.90, February 24, 2019 DOS WEDGE

11

Example:
To load a program from directory listing:

LIST

1 "TEST " IDE64
0 "PLUGINS" DIR
132 "2 PLANETS BY" FUN
45 "DRAZPAINT 2.0" PRG
41 "DRAZLACE V1.0" PRG
%4 "TASM",8 PRG
33 "SHUDDER.DRL" PRG
315 BLOCKS USED.
READY.

SEARCHING FOR TASM
LOADING $9000-$CF00
READY.
²

11.6 ´ – verify assembly file

Verifies an assembly file, like ‘VERIFY"FILE",〈current device〉,1’.
Example:

Verify Drazlace:
'DRAZLACE*

SEARCHING FOR DRAZLACE*
VERIFYING $0801-$3023
OK

READY.
²

11.7 ↑ – autostart BASIC program

Loads a BASIC file, like ‘/’, and then starts it with ‘RUN’.
Example:

Load Drazlace and start it:

111

11

DOS WEDGE IDEDOS 0.90, February 24, 2019

�DRAZLACE*

SEARCHING FOR DRAZLACE*
LOADING $0801-$3023
READY.
R³:

11.8 ← – save BASIC program

Saves a BASIC file, like ‘SAVE"FILE",〈current device〉’.

Example:

To save a program:

¬MYFILE

SAVING MYFILE $0801-$0932
READY.
²

11.9 £ – autostart assembly program

Loads an assembly file, like ‘%’, and then starts it with JMP at it’s
load address.

Example:

Load and start TASM:

£TASM

SEARCHING FOR TASM
LOADING $9000-$CF00

112

IDEDOS 0.90, February 24, 2019 DOS WEDGE

11

11.10 . – change directory

Changes directory, like ‘CD’, but much better when used on directory
list.
Example:

Enter directory ‘PLUGINS’:

@$

1 "TEST " IDE64
. "PLUGINS" DIR
132 "2 PLANETS BY" FUN
45 "DRAZPAINT 2.0" PRG
41 "DRAZLACE V1.0" PRG
64 "TASM" PRG
33 "SHUDDER.DRL" PRG
315 BLOCKS USED.
READY.

READY.
²

11.11 # – execute shell

Loads the machine language program called ‘1//:SH’ from the system
drive and executes it. The last used device number will be placed at
$FF. The pointer $7A points to the rest of the non-tokenized command
line.

The assembly program in Listing 12 defines ‘#T’ to start Turbo
Assembler from ‘1//UTIL/:TASM’ from the system drive.

*=$334

jsr $79
cmp #"t" ;#T?
bne not
ldx $ba ;boot device

113

11

DOS WEDGE IDEDOS 0.90, February 24, 2019

ldy #1 ;,1
jsr $ffba ;setlfs
lda #nameend-name
ldx #<name
ldy #>name
jsr $ffbd ;setnam
lda #0
jsr $ffd5 ;load it!
bcs not ;error?
lda $ff
sta $ba ;restore last used device
jmp $9000 ;start tasm

not lda $ff
sta $ba ;restore last used device
jmp $e37b ;exit with ready.

name .text "1//util/:tasm"
nameend

Listing 12: Shell sample source

114

IDEDOS 0.90, February 24, 2019 BASIC EXTENSIONS

12

12 BASIC extensions

On the following few pages the new and changed BASIC commands
are described. In the format descriptions everything between ‘[’ and
‘]’ is optional, and ‘〈name〉’ means a parameter.

As a bugfix the ?SYNTAX ERROR bug of LIST command was fixed,
listing of BASIC programs protected by ‘REM L’ is not a problem
anymore.

Binary, octal, decimal and hexadecimal numbers are supported in
expressions:

PRINT %11; &11; 11; $11
3 9 11 17

READY.
²

The BASIC editor was extended with redefinable function keys.
The complete list is in Table 14. To enable or disable this function
see the setup option “3.1.12 Function keys”.

12.1 CD – change directory

Sends change directory to the last used or specified device. (Same as
‘@CD:PARAMETER’) There’s no short form of this command.
Format:

CD"[[〈part #〉][〈path〉]:]〈directory name〉"[,〈device #〉]
Example:

CD"GAMES"

READY.
²

115

12

BASIC EXTENSIONS IDEDOS 0.90, February 24, 2019

12.2 CDCLOSE – insert medium

Sends close tray command to the last used or specified device. (Same
as ‘@U0>E0’) Not very useful, as the tray will be automatically in-
serted on first medium access anyway. The short form is ‘CDCLO’.

Format:

CDCLOSE [〈device #〉]

12.3 CDOPEN – eject medium

Sends eject medium command to the last used or specified device.
Beside CD-ROM and DVD drives it works with LS-120 or Zip drive
too. (Same as ‘@U0>E1’) The short form is ‘CDOP’.

Format:

CDOPEN [〈device #〉]

12.4 CHANGE – change device number

Sends change device number to the last used or specified device.
(Same as ‘@S-8’ or ‘@S-D’) The short form is ‘CHA’.

Format:

CHANGE [〈device #〉]

Example:

Change device 12 to be device 8:

CHANGE12

READY.
²

116

IDEDOS 0.90, February 24, 2019 BASIC EXTENSIONS

12

Change device 8 back:

CHANGE8

READY.
²

12.5 DATE – display date

Prints the date and time9 of the last used or specified device. (Same
as ‘@T-RA’) There’s no short form of this command.

Format:

DATE [〈device #〉]
Example:

DATE
THUR 08/12/04 08:51:18 PM

READY.
²

12.6 DEF – redefine F-keys

If you do not like the default F1–F8 function key assignment, then this
command can change it. The best practice to make this permanent to
put it into the boot file, and select “Power on” or “Always” in the
setup for “3.1.2 Start boot file”. Of course the “3.1.12 Function keys”
setting must be enabled to make use of the function keys. All 8 string
parameters are mandatory, if the string contains a CHR$(13) character
then a RETURN key press is simulated.

Format:
9For date format see “15.4.8 Reading time from RTC”.

117

12

BASIC EXTENSIONS IDEDOS 0.90, February 24, 2019

DEF"〈F1〉","〈F3〉","〈F5〉","〈F7〉","〈F2〉","〈F4〉","〈F6〉","〈F8〉"

10 F1$="%0:*":F2$="/0:*":F3$="@$:*"+CHR$ (13)

20 F4="":F5$="LIST"+CHR$ (13): F6$="SYS."+CHR$ (13)

30 F7$="RUN:"+CHR$ (13):F8="MAN"+CHR$ (13)

40 DEF F1$,F3$,F5$,F7$,F2$,F4$,F6$,F8$

50 PRINT CHR$ (145)" "CHR$ (145) CHR$ (145);

60 NEW

Listing 13: This boot file redefines the F-keys, and cleans up the screen

12.7 DIR – list directory

Lists the directory of the last used or specified device. (Same as
‘@$:PATTERN’) There’s no short form of this command.

Format:

DIR["[[〈part #〉][〈path〉]:]〈pattern〉"[,〈device #〉]]
Example:

DIR"*=B

3 "ACE " IDE64
0 "BIN" DIR
0 "ETC" DIR
0 "HOME" DIR
0 BLOCKS USED.
READY.
²

12.8 HDINIT – redetect drives

Trys to auto detect drives connected to the cartridge. The short form
is ‘HD’.

Format:

118

IDEDOS 0.90, February 24, 2019 BASIC EXTENSIONS

12

HDINIT

Example:

HDINIT
MASTER:
ST9385AG

READY.
²

12.9 INIT – init memory

Fills memory with nulls or with the specified byte, and then it per-
forms a reset. Useful before linking. The short form is ‘INI’.

Format:

INIT [〈fill byte #〉]

Example:

Fill memory with $55

INIT$55

12.10 KILL – disable cartridge

Switches cartridge off. Useful if you suspect compatibility problems
with a program. Will also shut down power managed drives, if typed
as ‘KILL!’. The short form is ‘KI’.

Format:

KILL[!]

Example:

119

12

BASIC EXTENSIONS IDEDOS 0.90, February 24, 2019

KILL
BYE!

READY.
²

12.11 KILLNEW – recover basic program

This command recovers “lost” basic program after a NEW or a reset,
as long as the memory is still intact. (no new variables were created)
There’s no short form of this command.

Format:

KILLNEW

Example:

KILLNEW

READY.
²

12.12 LL – long directory list

Pretty verbose directory list for power users. First line is the directory
label, same parameters as for command DIR. No short form.

Format:

LL["[[〈part #〉][〈path〉]:]"[,〈device #〉]]
Examples:

Simple listing:

LL

D--RWX- 1980-01-01 00:00:00
"WORK " DIR 560/5/36

120

IDEDOS 0.90, February 24, 2019 BASIC EXTENSIONS

12

Part Meaning

-

. DEL entry
- Normal file
R Relative file
D Directory
L Link

C C Closed

D D Deletable

R R Readable

W W Writable

X X Loadable

- H Hidden

363 Size of file in bytes (block for non-IDE64)

2004-08-12 Date

16:12:13 Time

"LIST" Filename

TXT File type

568/12/4 Disk address (CHS or LBA)

Record length (only for relative files)

Table 13: LL list format

121

12

BASIC EXTENSIONS IDEDOS 0.90, February 24, 2019

DC-R-XH 0 1980-01-01 00:00:00
"%DELETED FILES%" DIR 560/5/35
-CDRWX- 363 2004-08-12 16:12:13
"LIST" TXT 568/12/4
-CDRWX- 820528 2004-08-11 16:32:26
"UTILITIES" ZIP 560/5/37
-CDRWX- 2234108 2004-08-11 18:46:01
"TXT" ZIP 562/9/21
-CDRWX- 25513 2004-08-11 19:29:43
"CHANNEL15" ASM 568/11/9
RCDRW-- 32002 2004-09-08 14:33:39
"USERS" REL 570/4/3 127
READY.
²

Redirect listing into file for later review.
OPEN 1,12,1,"LIST,S":CMD 1:LL:PRINT#1:CLOSE 1

READY.
²

Listing works on 1541, 1570, 1571, 1581, and CMD drives (on
all non-extended native partitions) too:
LL"",8

"GEOS 128 V2.0AM " CP 2A
P-- 2 1988-08-22 13:00
"GEOS" PRG 19/15
P-- 6 1988-08-22 13:00
"GEOS BOOT" PRG 19/17
U-- 156 1988-08-22 13:00
"GEOS KERNAL" USR 19/18
U-W 137 1988-10-10 13:06
"128 DESKTOP" USR 8/20
U-W 79 1988-09-08 16:50
"128 CONFIGURE" USR 15/6
R-W 13 2000-00-00 00:00
"DATA" REL 10/6 76 9/11
BREAK
READY.
²

12.13 LOAD – load a program

Loads a program file into memory. Using no device number selects
last used device. No filename means ‘∗’, except for tape. The short

122

IDEDOS 0.90, February 24, 2019 BASIC EXTENSIONS

12

form is ‘LO’.

Format:

LOAD["[[〈part #〉][〈path〉]:]〈filename〉"[,〈device #〉[,〈mode #〉]]]

Example:

LOAD

SEARCHING FOR *
LOADING $0801-$099E
READY.
²

12.14 MAN – start manager

Starts the built in file manager. To force the re-read of ‘MAN,USR’ start
the manager with ‘MAN!’. The short form is ‘MA’.

Format:

MAN[!]

12.15 MKDIR – create directory

Sends make directory to the last used or specified device. (Same as
‘@MD:NEWDIR’) The short form is ‘MK’.

Format:

MKDIR"[[〈part #〉][〈path〉]:]〈directory name〉"[,〈device #〉]

Example:

MKDIR"PICS",12

READY.
²

123

12

BASIC EXTENSIONS IDEDOS 0.90, February 24, 2019

12.16 RM – remove file

Sends scratch file to the last used or specified device. (Same as
‘@S:FILENAME’) There’s no short form of this command.

Format:

RM"[[〈part #〉][〈path〉]:]〈file name〉"[,〈device #〉]

Example:

RM"OLDSTUFF",8

READY.
²

12.17 RMDIR – remove directory

Sends remove directory to the last used or specified device. (Same as
‘@RD:DIRNAME’) There’s no short form of this command.

Format:

RMDIR"[[〈part #〉][〈path〉]:]〈directory name〉"[,〈device #〉]

Example:

RMDIR"OLDDIR"

READY.
²

12.18 SAVE – save a program

Saves program to disk. Using no device number selects last used
device. You’ll get a ‘?FILE DATA ERROR’ if an error happens during
save. The short form is ‘SA’.

124

IDEDOS 0.90, February 24, 2019 BASIC EXTENSIONS

12

Format:

SAVE"[[@][〈part #〉][〈path〉]:]〈filename〉"[,〈device #〉[,〈mode #〉]]
Example:

SAVE"TEST"

SAVING TEST $0801-$1A43
READY.
²

12.19 SYS – start ML program

This keyword can be used to call machine code subroutines for BA-
SIC. Optionally the accumulator, the X and Y registers and the status
can be specified separated by semicolons.

Format:

SYS 〈address #〉[;〈a #〉[;〈x #〉[;〈y #〉[;〈sr #〉]]]]
Examples:

Print a star to the center of screen:

SYS $FFF0;;12;20;0:PRINT"*"

Start the built in monitor:

SYS.

12.20 VERIFY – verify program

Verifies that the program in memory matches the on-disk version. Us-
ing no device number selects last used device. No filename means ‘∗’.
The short form is ‘VE’.

125

12

BASIC EXTENSIONS IDEDOS 0.90, February 24, 2019

Format:

VERIFY["[[〈part #〉][〈path〉]:]〈filename〉"[,〈device #〉[,〈mode #〉]]]
Example:

VERIFY"TEST"

SEARCHING FOR TEST
VERIFYING $0801-$1A43
OK

READY.
²

Key Result Function

F1 ↑!∗,P RETURN LOAD"!∗,P" and RUN

F3 @$ RETURN List directory
F5 LI RETURN List program
F7 RU: RETURN Run program
F2 %:∗ RETURN LOAD":∗",DR,1
F4 @$∗=P List programs in directory
F6 LL RETURN Detailed directory list
F8 MA RETURN Start manager

Table 14: Default BASIC function keys

126

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

13 Programming in assembly

13.1 Standard KERNAL routines

These routines work with all types of drives, you should use them
in your programs for compatibility with IDE64, RamLink and other
non-serial bus drives.

13.1.1 READST – read status byte ($FFB7)

Implementation: Standard KERNAL
Communication registers: None
Preparatory routines: None
Error returns: None
Status: None
Registers affected: A

Returns the status in accumulator. It’s used to detect errors, end
of file, etc.

jsr chrin ;read data from file
sta data,y
jsr readst ;test status
and #$40 ;end of file flag
bne endoffile

Listing 14: Check end of file while reading

127

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

Bit Meaning

7 Device not present
6 End of File
5 (Tape CRC error)
4 Verify/read error (Tape read error)
3 (Tape long block)
2 (Tape short block)
1 Timeout on receive
0 Timeout on send

Table 15: Device status ($90)

13.1.2 SETMSG – control KERNAL messages ($FF90)

Implementation: Standard KERNAL
Communication registers: A
Preparatory routines: None
Error returns: None
Status: None
Registers affected: A

Controls IDEDOS and KERNAL message printing. Messages are
things like ‘SEARCHING FOR XXX’ and ‘I/O ERROR#05’. Sometimes
it’s useful to suppress such messages to not destroy the screen.

lda #$00
jsr setmsg ;turn off messages

Listing 15: Turn off messages to prevent screen distortion

128

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

Bit Meaning

7 Full error messages (LOADING, etc.)
6 KERNAL error messages (I/O ERROR#x)

5–0 Undefined

Table 16: Messages ($9D)

13.1.3 STOP – scan stop key ($FFE1)

Implementation: Standard KERNAL
Communication registers: A
Preparatory routines: None
Error returns: None
Status: None
Registers affected: A, X

Checks if STOP was pressed, and calls CLRCHN if so.

jsr chrin
sta ($fb),y
jsr stop
beq stopped ;stop was pressed
...

stopped lda #filenum
jmp close ;close file and exit

Listing 16: Check STOP key while reading a file

129

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

13.1.4 SETLFS – set file parameters ($FFBA)

Implementation: Standard KERNAL
Communication registers: A, X, Y
Preparatory routines: None
Error returns: None
Status: None
Registers affected: None

Sets logical file number, device number and secondary address.
These parameters are the same as for the OPEN BASIC command. It’s
used before OPEN, LOAD and SAVE. File number is ignored for LOAD

and SAVE, and secondary address too for SAVE.

File number Meaning

0 Illegal
1–127 Nothing special

128–255 BASIC adds CHR$(10) after each line

Table 17: File numbers ($B8)

Device # Device Device # Device

0 Keyboard 6–7 IEC bus plotters
1 Datassette 8–11 IEC bus disk drives
2 RS-232C device 12–30 IEC bus other
3 Display 8–22 IDEDOS drives

4–5 IEC bus printers 31–255 Illegal

Table 18: Device numbers ($BA)

130

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

Secondary address Open mode

0 Read access (LOAD)
1 Write access (SAVE)

2–14 Bi-directional data channel
15 Status and command channel

16–127 Illegal
128–255 No secondary address

Table 19: Secondary addresses ($B9)

13.1.5 SETNAM – set filename ($FFBD)

Implementation: Standard KERNAL
Communication registers: A, X, Y
Preparatory routines: None
Error returns: None
Status: None
Registers affected: None

Sets filename and name length for OPEN, LOAD, and SAVE rou-
tines.

NOTE

The filename must be located below $D000 in memory. Don’t
forget to set $01 if it’s under the BASIC ROM before calling
OPEN, LOAD or SAVE!

131

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

13.1.6 OPEN – open file ($FFC0)

Implementation: IDEDOS Extended
Communication registers: None
Preparatory routines: SETLFS, SETNAM

Error returns: 1, 2, 4, 5, 6, 7, 240 (see Table 20)
Status: $00, $80
Registers affected: A, X, Y

Opens a file and associates it with a logical file number.

lda #filenum ;file number (1-255)
ldx $ba ;actual device number
ldy #secaddy ;secondary address
jsr setlfs
lda #8 ;filename length
ldx #<name ;address low byte
ldy #>name ;high byte
jsr setnam
...
jsr open
...

name .text "filename"

Listing 17: Set file parameters and filename for OPEN

132

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

13.1.7 CLOSE – close file ($FFC3)

Implementation: IDEDOS Extended
Communication registers: A
Preparatory routines: None
Error returns: 0, 240 (see Table 20)
Status: $00, $03, $80
Registers affected: A, X, Y

Closes the file associated by the logical file number.
NOTE

Unlike serial devices IDEDOS does not close it’s files when clos-
ing the error channel.

lda #filenum ;opened file number
jsr close

Listing 18: Close a file

133

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

13.1.8 CHKIN – set file as input ($FFC6)

Implementation: IDEDOS Extended
Communication registers: X
Preparatory routines: valid OPEN

Error returns: 0, 3, 5, 6 (see Table 20)
Status: $00, $03, $80
Registers affected: A, X

Set standard input to the logical file number. This means now you
can use CHRIN, GETIN and READ on the file.

...
jsr open ;open file

ldx #filenumber ;opened file number
jsr chkin ;set input

ldx #0
jsr chrin ;get bytes
sta $400,x
...

Listing 19: Start to read from a file

134

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

13.1.9 CHKOUT – set file as output ($FFC9)

Implementation: IDEDOS Extended
Communication registers: X
Preparatory routines: valid OPEN

Error returns: 0, 3, 5, 7 (see Table 20)
Status: $00, $03, $80
Registers affected: A, X

Set standard output to the logical file number. This means now
you can use CHROUT and WRITE on the file.

...
jsr open ;open file

ldx #filenumber ;opened file number
jsr chkout ;set output

ldx #0
lda $400,x
jsr chrout ;write out data
...

Listing 20: Starts to write to a file

135

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

13.1.10 CHRIN – input character ($FFCF)

Implementation: IDEDOS Extended
Communication registers: None
Preparatory routines: valid OPEN, CHKIN

Error returns: None
Status: $00, $40, $42, $52, $80
Registers affected: A (Y but not for file I/O)

Get a character from standard input. If it’s the screen the cursor
will appear and you can type in characters until RETURN.

...
jsr chkin

ldy #0
jsr chrin
sta data,y
iny
...

Listing 21: Read in a byte from a file

136

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

13.1.11 GETIN – get character ($FFE4)

Implementation: IDEDOS Extended
Communication registers: None
Preparatory routines: valid OPEN, CHKIN

Error returns: None
Status: $00, $40, $42, $52, $80
Registers affected: A (X, Y but not for file I/O)

Get a character from standard input. If it’s the screen the last
pressed keys from the keyboard buffer will be be returned. If there is
none, then $00 will be returned.

...
jsr chkin

ldy #0
jsr getin
sta data,y
iny
...

Listing 22: Read in a byte from a file

...
jsr clrchn ;keyboard/screen
...

wait jsr getin ;get key
beq wait ;nothing pressed?

Listing 23: Wait until a key is pressed

137

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

13.1.12 CHROUT – output character ($FFD2)

Implementation: IDEDOS Extended
Communication registers: A
Preparatory routines: valid OPEN, CHKOUT

Error returns: 0 (see Table 20)
Status: $00, $03, $80
Registers affected: None

Output a character to standard output.

...
jsr chkout

lda #$00
jsr chrout ;write 0
...

Listing 24: Write a byte to a file

138

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

13.1.13 CLALL – close all files ($FFE7)

Implementation: IDEDOS Extended
Communication registers: None
Preparatory routines: None
Error returns: None
Status: $00, $03, $80
Registers affected: A, X

Forget about all files and set standard input and output to keyboard
and screen.

NOTE

In it’s standard implementation this call wipes out the open files
table without closing the files for real. You should close files by
using the CLOSE call, as this call is only intended to be used at the
beginning of programs to make sure all files are closed. However
IDEDOS will close it’s own files to reduce the chance of creating
splat files.

jsr clall ;close files, default I/O
jmp run ;run program

Listing 25: Make sure all files are closed before starting

139

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

13.1.14 CLRCHN – reset input and output ($FFCC)

Implementation: IDEDOS Extended
Communication registers: None
Preparatory routines: None
Error returns: None
Status: $00, $03, $80
Registers affected: A, X

Set standard input and output to keyboard and screen.

...
jsr chkin
...
jsr clrchn ;set default I/O
lda #1
jsr close

Listing 26: Set standard keyboard and screen for in and output

140

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

13.1.15 LOAD – load ram from file ($FFD5)

Implementation: IDEDOS Extended
Communication registers: A, X, Y
Preparatory routines: SETLFS, SETNAM

Error returns: 0, 4, 5, 8, 9, 16 (see Table 20)
Status: $00, $10, $40, $42, $50, $52, $80
Registers affected: A, X, Y

Loads or verifies a program file. Program files start with a 2 byte
little endian memory start address.

NOTE

The standard implementation does not permit to load below the
I/O area. However IDEDOS switches $01 memory configuration
register automatically if needed to allow of loading huge pro-
grams. Verifying RAM under I/O is unsupported.

lda #1 ;filename length
ldx #<dirnam
ldy #>dirnam ;filename pointer
jsr setnam
lda #1 ;file number
ldx $ba ;actual device number
ldy #0 ;sec.address 0=specified,
jsr setlfs ;else original location

lda #$00 ;load flag (1=verify)
ldx #<dirbuff
ldy #>dirbuff ;new start address

141

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

jsr load
bcc loadok
...
rts

loadok stx $ae ;new end after load/verify
sty $af
...
rts

dirnam .text "$"

Listing 27: Load the program formatted directory listing to “dirbuff”

142

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

13.1.16 SAVE – save ram to file ($FFD8)

Implementation: IDEDOS Extended
Communication registers: A, X, Y
Preparatory routines: SETLFS, SETNAM

Error returns: 0, 5, 8, 9, 24 (see Table 20)
Status: $00, $03, $80
Registers affected: A, X, Y

Save program to file. A 2 byte start address is inserted in front of
the data.

NOTE

It’s possible to save RAM from $0200 to $CFFF. For saving RAM
under the BASIC ROM don’t forget to set $01!

databegin = $fb

lda #1 ;file number
ldx $ba ;actual device number
ldy #0 ;sec.address
jsr setlfs
lda #8 ;filename length
ldx #<name
ldy #>name ;filename pointer
jsr setnam

lda #<$1000
sta databegin ;begin
lda #>$1000
sta databegin+1

143

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

lda #databegin
ldx #<$8000
ldy #>$8000 ;end
jsr save
...

name .text "filename"

Listing 28: Save the memory $1000–$7FFF to a file

Accu Meaning

0 Routine terminated by the STOP key
1 Too many open files
2 File already open
3 File not open
4 File not found
5 Device not present
6 File is not an input file
7 File is not an output file
8 File name is missing
9 Illegal device number

16 Out of memory (LOAD)
24 File data error (SAVE)

240 Top-of-memory change RS-232 buffer (de)allocation

Table 20: Error codes returned by IDEDOS and KERNAL

144

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

13.2 IDE64 specific routines

13.2.1 IDE64 card detection

If you want that your application using READ or WRITE calls remain
still runnable on a not IDE64 equipped machine, check for IDE64
presence before calling these two calls, and use standard routines in-
stead. (Imagine what happens at JSR $DEF1 if there’s open I/O space
at $DE00–$DEFF. . .)

lda $de60 ;check IDE64
cmp #$49
bne old
lda $de61
cmp #$44
bne old
lda $de62
cmp #$45
bne old

lda #zp
jsr $def1
bcs old2 ;write not available?
rts

old2 ldx #channel
jsr chkout ;or chkin

old ... ;old byte by byte routine
rts

Listing 29: Detect IDE64 before write and workaround if not present

145

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

This works nice, unless someone has an old ActionReplay in-
stalled instead, which will crash. . .

lda $df09
cmp $df09
bne notaction ;no action replay there
cmp #$78 ;maybe it’s and AR
beq old ;do not check for IDE64

notaction
... ;IDE64 detection as above

old ... ;old byte by byte routine
rts

Listing 30: Check for ActionReplay first to avoid crash

13.2.2 WRITE – write ram ($DEF1)

Implementation: IDEDOS only
Communication registers: A, X, Y
Preparatory routines: valid OPEN, CHKOUT

Error returns: 5, 7, 9, 24 (see Table 20)
Status: $00, $80
Registers affected: A, X, Y

Save memory to an IDE64 drive. It’s much faster than calling
CHROUT a lot of times.

To avoid possible compatibility problems make sure that there’s
an IDE64 installed (13.2.1 IDE64 card detection), and consider in-

146

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

cluding the byte-by-byte replacement, as shown in “13.2.3 WRITE –
replacement”!

NOTE

It’s not possible to save under I/O. (e.g. saving from $D800 will
save color RAM) To access RAM under the BASIC and KER-
NAL ROM, set $01 correctly. Saving RAM under the KERNAL
ROM is not supported on SuperCPU.

13.2.3 WRITE – replacement

Here’s an example replacement byte-by-byte routine for non-IDE64
drives, can be shortened of course:

stx wnum
sty wnum+1 ;number of bytes
stx tmp
sty tmp+1
tax
lda $00,x
sta pointer
lda $01,x
sta pointer+1 ;copy pointer

ldx #channel
jsr chkout ;do select output
bcs end ;error happened

loop lda wnum ;write loop
ora wnum+1
beq end

147

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

ldy #0
lda (pointer),y
jsr chrout
lda $90 ;status
bne end2 ;error during write

lda wnum
bne at2
dec wnum+1

at2 dec wnum

inc pointer
bne loop
inc pointer+1
jmp loop

end2 jsr clrchn
lda #5 ;device not present
sec

end php
pha
lda tmp
sec
sbc wnum
tax
lda tmp+1
sbc wnum+1 ;calculate
tay ;bytes written
pla
plp

148

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

rts

Listing 31: An compatibility fallback in case WRITE is not available

13.2.4 READ – read ram ($DEF4)

Implementation: IDEDOS only
Communication registers: A, X, Y
Preparatory routines: valid OPEN, CHKIN

Error returns: 5, 6, 9, 24 (see Table 20)
Status: $00, $40, $42, $52, $80
Registers affected: A, X, Y

Load data block from a IDE64 drive. Much faster than a lot of
CHRIN or GETIN.

To avoid possible compatibility problems make sure that there’s
an IDE64 installed (13.2.1 IDE64 card detection), and consider in-
cluding the byte-by-byte replacement, as shown in “13.2.3 WRITE –
replacement”!

NOTE

This routine does not load under I/O. (e.g. reading to $D800 will
overwrite color RAM)

lda #1 ;source file number
ldx $ba ;actual device number
ldy #0 ;secondary address, read
jsr setlfs
lda #outputname-inputname

149

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

ldx #<inputname
ldy #>inputname
jsr setnam
jsr open ;open input file

lda #2 ;destination filenumber
ldx $ba ;actual device number
ldy #1 ;secondary address, write
jsr setlfs
lda #status-outputname
ldx #<outputname
ldy #>outputname
jsr setnam
jsr open ;open output file

lda #<startadd
sta $fb
lda #>startadd ;buffer start address
sta $fc

ldx #1 ;set input to source file
jsr chkin

ldx #2
jsr chkout ;set output to dest. file

loop lda #$fb ;start address is here
ldx #<blocksize
ldy #>blocksize ;block size
jsr read ;read
bit $90 ;readst

150

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

php ;status to stack

lda #$fb
jsr write ;write
plp ;status
bvc loop ;test end of file

lda #2
jsr close ;close output file
lda #1
jsr close ;close input file
jsr clall ;set default I/O device
rts

inputname .text "//bin/:input-file"
outputname .text "//tmp/:output-file"
status .byte 0

Listing 32: Copy a file using READ and WRITE

13.2.5 READ – replacement

Here’s an example replacement byte-by-byte routine for non-IDE64
drives:

stx rnum
sty rnum+1 ;number of bytes
stx tmp
sty tmp+1
tax
lda $00,x

151

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

sta pointer
lda $01,x
sta pointer+1 ;copy pointer

ldx #channel
jsr chkin ;do select output
bcs end ;error happened

loop lda rnum ;read loop
ora rnum+1
beq end

jsr chrin
ldx $90 ;status
beq ok
cpx #$40
bne end2 ;error happened

ok ldy #0
sta (pointer),y

lda rnum
bne at2
dec rnum+1

at2 dec rnum

clc
txa
bne end ;end of file reached

inc pointer
bne loop

152

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

inc pointer+1
jmp loop

end2 jsr clrchn
lda #5 ;device not present
sec

end php
pha
lda tmp
sec
sbc rnum
tax
lda tmp+1
sbc rnum+1 ;calculate
tay ;bytes read
pla
plp
rts

Listing 33: An compatibility fallback in case READ is not available

13.3 IDE64 compatible programming

13.3.1 Serial bus specific code

Many programs use serial bus specific KERNAL calls which won’t
work with IDE64 drives. Such code has to be rewritten to use standard
KERNAL calls. Here’s a list of problematic routines, and what to do
with them:

IECOPEN ($F3D5), IECCLOSE ($F642)

153

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

Serial bus file open and close. Can be replaced by OPEN and
CLOSE.

LISTEN ($FFB1, $ED0C), then SECOND ($FF93, $EDB9)

Used to prepare the device to send data to a channel, can be
replaced by CHKOUT.

TALK ($FFB4, $ED09), then TKSA ($FF96, $EDC7)

Used to prepare the device to read data from a channel, can be
replaced by CHKIN.

ACPTR ($FFA5, $EE13), CIOUT ($FFA8, $EDDD)

Read and write a byte from and to the serial bus, can be replaced
by CHRIN and CHROUT.

UNTLK ($FFAB, $EDEF), UNLSN ($FFAE, $EDFE)

Send untalk and unlisten, can be replaced by CLRCHN.

An example serial bus code fixing can be seen in Listing 37 and
Listing 38.

13.3.2 Vector table restoring

A lot of programmers use calls such as JSR $FF8A or JSR $FD15 to
restore the kernal IO vectors on page 3 for some reason. Of course
this means the program has no more access to IDE64 drives, even if
using standard KERNAL calls.

If the vector restore is at the begining of a program, it can be most
likely safely removed.

154

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

Sometimes it’s used to restore the IRQ and NMI vectors, and a
simple remove will break the program. See Listing 34 for vector table
restore.

restor ldy #$05
lp lda $fd30,y ;restore interrupt

sta $314,y ;vectors from kernal
dey
bpl lp
rts

Listing 34: Interrupt vector restoring

This will restore BRK and NMI too, so the monitor won’t work.
If the program does not use NMI and you need the monitor for de-
bugging, a simpler patch like in Listing 35 will do.

restor lda #<$ea31
sta $314 ;restore irq only
lda #>$ea31
sta $315
rts

Listing 35: IRQ vector restoring

Some programs really destroy the vector table, in this case one
first has to save the vector table at the program’s beginning to a safe
place, and restore it later. Here’s a short example code for vector table
handling in Listing 36.

NOTE

Never save a fixed vector table into the program, it won’t work
without IDE64 or with future versions of IDEDOS!

155

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

save sec ;save vectors on start
.byte $24 ;skip clc (bit)

restore clc ;restore them later
ldx #<safeplace
ldy #>safeplace
jmp $ff8d ;vector

safeplace ;32 bytes free space

Listing 36: Vector save and restore

13.3.3 Direct KERNAL calls

As IDEDOS uses the vector table at $03xx, directly calling KER-
NAL will skip this indirection, and as a result IDE64 drives cannot be
accessed. Table 21 contains the routine addresses to be looking for.

lda #8 ;drive 8
sta $ba lda #2 ;filenumber
lda #$6f ;channel ldx $ba ;last drive
sta $b9 ldy #15 ;channel
lda #0 jsr $ffba ;setparam
sta $90 lda #0
jsr $ffbd ;setname jsr $ffbd ;setname
jsr $f3d5 ;open jsr $ffc0 ;open

lda $ba ldx #2 ;filenumber
jsr $ed0c ;listen jsr $ffc9 ;chkout
lda $b9
jsr $edb9 ;second

156

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

Old Replace with Name

$F34A $FFC0 OPEN

$F291 $FFC3 CLOSE

$F20E $FFC6 CHKIN

$F250 $FFC9 CHKOUT

$F157 $FFCF CHRIN

$F13E $FFE4 GETIN

$F1CA $FFD2 CHROUT

$F4A5 $FFD5 LOAD

$F5ED $FFD8 SAVE

$F32F $FFE7 CLALL

$F333 $FFCC CLRCHN

Table 21: Direct KERNAL call replacement table

lda #$49 lda #$49
jsr $eddd ;send jsr $ffd2 ;chrout

jsr $edfe ;unlisten jsr $ffcc ;clrchn

lda $ba ldx #2 ;filenumber
jsr $ed09 ;talk jsr $ffc6 ;chkin
lda $b9
jsr $edc7 ;tksa

lp jsr $ee13 ;read lp jsr $ffcf ;read
jsr $ffd2 ;print jsr $ffd2 ;print
bit $90 bit $90
bvc lp bvc lp

157

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

jsr $edef ;untalk jsr $ffcc ;clrchn
jsr $f642 ;close lda #2

jsr $ffc3 ;close

Listing 37: Serial bus error channel reading replacement

lda #$24 ;$ sign lda #$24 ;$ sign
sta $fb ;name sta $fb ;name
lda #0
sta $90
lda #8 ;drive 8 lda #2 ;filenum
sta $ba ldx $ba ;last drv
lda #$60 ;channel ldy #0 ;channel
sta $b9 jsr $ffba ;setparam
ldx #$fb lda #$fb
ldy #0 ldy #0
lda #1 lda #1
jsr $ffbd ;setname jsr $ffbd ;setname

jsr $f3d5 ;open jsr $ffc0 ;open

lda $ba ldx #2 ;filenum
jsr $ffb4 ;talk jsr $ffc6 ;chkin
lda $b9
jsr $ff96 ;tksa

lda #$00
sta $90
ldy #3 ldy #3

158

IDEDOS 0.90, February 24, 2019 PROGRAMMING IN ASSEMBLY

13

lp sty $fb lp sty $fb
jsr $ffa5 jsr $ffcf
sta $fc sta $fc
ldy $90 ldy $90
bne eof bne eof

jsr $ffa5 jsr $ffcf
ldy $90 ldy $90
bne eof bne eof
ldy $fb ldy $fb
dey dey
bne lp bne lp
ldx $fc ldx $fc
jsr $bdcd ;number jsr $bdcd ;number
lda #$20 lda #$20
jsr $ffd2 jsr $ffd2

lp2 jsr $ffa5 lp2 jsr $ffcf
ldx $90 ldx $90
bne eof bne eof
tax tax
beq eol beq eol
jsr $ffd2 jsr $ffd2
jmp lp2 jmp lp2

eol lda #13 eol lda #13
jsr $ffd2 jsr $ffd2
ldy #2 ldy #2
bne lp bne lp

eof eof jsr $ffcc ;clrchn

159

13

PROGRAMMING IN ASSEMBLY IDEDOS 0.90, February 24, 2019

jsr $f642 ;close lda #2
jsr $ffc3 ;close

Listing 38: A classic serial bus specific directory lister routine. The right
column shows the standard KERNAL version

160

IDEDOS 0.90, February 24, 2019 PCLINK

14

14 PCLink

IDEDOS also supports a special “PCLink” device, which is a network
virtual drive. It’s mostly implemented on the host computer using a
server software called “ideservd”.

PCLink is most widely used for file transfers between the C64
and the host computer’s filesystem, as the host’s files and directories
can be directly accessed. Beyond file transfers it also supports all
(except seeking and direct access) operations which are possible with
a normal drive.

14.1 PCLink over IEC bus

The slowest method but the easiest, if you already have a X1541,
XE1541, XM1541 or XA1541 cable. All serial bus devices must be
switched off or removed from the bus for correct operation. The max-
imal transfer speed is around ∼4.5 kB/s.

Pin C64 IEC bus Pin Host printer port

2 GND 18–25 GND
3 ATN 1 STROBE
4 CLK 14 AUTOFEED
5 DATA 17 SELECT IN

Table 22: X1541 PCLink cable

This cable will not work with all printer ports. The other cable
types are described in the Star Commander’s documentation, written
by Joe Forster/STA.

161

14

PCLINK IDEDOS 0.90, February 24, 2019

14.2 PCLink over PC64 cable

This connection is made between the parallel port of the host com-
puter and the user port of a C64 using a cable similar to Laplink. The
layout is the same as for the PC64 cable. The maximal transfer speed
is around ∼9 kB/s.

NOTE

There are no optional wires here, so if you have an old PCLink
cable, then check if B and FLAG are connected!

Pin C64 user port Pin Host printer port

A, 1 GND 18–25 GND
B FLAG2 9 D7
C PB0 15 ERROR
D PB1 13 SELECT
E PB2 12 PAPER
F PB3 10 ACK IN
H PB4 2 D0
J PB5 3 D1
K PB6 4 D2
L PB7 5 D3
M PA2 11 BUSY

N, 12 GND 18–25 GND

Table 23: Parallel PCLink cable

162

IDEDOS 0.90, February 24, 2019 PCLINK

14

WARNING!
Incorrectly built cable can damage the printer and/or userport!
Same for plugging the cable while the computers are turned on. . .

14.3 PCLink over RS-232C

A null modem cable with handshake is used between the host com-
puter’s serial port and a serial adapter10 attached to the C64. Com-
munication is done at 115.2 kbit/s11 resulting in an effective transfer
speed of around ∼11 kB/s.

9 pin C64 serial port 9 pin 25 pin Host serial port

2 RXD 3 2 TXD
3 TXD 2 3 RXD
7 RTS 8 5 CTS
8 CTS 7 4 RTS
5 GND 5 7 GND

Table 24: Serial PCLink cable

14.4 PCLink over ethernet

An ethernet crosslink cable is used between the host computer’s net-
work card and a network card12 attached to the C64. Communication

10DUART, SwiftLink and Turbo232 serial adapters are supported.
11SwiftLink is limited to 38.4 kbit/s.
12ETH64 (II), (E)TFE and RR-Net network adapters are supported.

163

14

PCLINK IDEDOS 0.90, February 24, 2019

is done using UDP/IP packets resulting in an effective transfer speed
of around ∼40 kB/s.

Try to avoid using lossy wireless links, as the protocol neither
retransmits lost packets, nor checks UDP checksum.

RJ45 C64 Color RJ45 Host

1 TX+ White and Orange 3 RX+
2 TX− Orange 6 RX−
3 RX+ White and Green 1 TX+
4 Blue 7
5 White and Blue 8
6 RX− Green 2 TX−
7 White and Brown 4
8 Brown 5

Table 25: Ethernet crosslink PCLink cable

14.5 PCLink over USB

It’s using a common 5 pin mini-B to A-type USB cable between the
host computer’s USB port and the IDE64 V4.1 and V4.2 cartridge.
The communication chip used is USB 1.1 and 2.0 compatible. Trans-
fer speed is around ∼40 kB/s.

The IDE64 USB interface is suppored by recent operating sys-
tems (as it’s just a common FTDI serial FIFO). If not, then there’s
a driver at http://www.ftdichip.com/Drivers/D2XX.htm. Without the
driver ideserv might not work properly. If there’s no native ideserv
support for USB, it’s possible to use the serial emulation at a slightly
reduced speed.

164

http://www.ftdichip.com/Drivers/D2XX.htm

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

15 Command channel

This section is about the DOS commands known by IDEDOS. Some
examples use the DOS wedge like ‘@I’, of course the ‘@’ at the
beginning of line is not part of the command.

In the format descriptions everything between ‘[’ and ‘]’ is op-
tional, and ‘〈name〉’ means a parameter.

15.1 File management commands

Here only the file management commands are listed, to learn more
about files see section “7 Using files”.

15.1.1 Position

Seeking is supported in both relative and regular files. The format for
a relative file is:

Format:

"P"+CHR$(〈channel #〉)+CHR$(〈record bits 0–7 #〉)+
CHR$(〈record bits 8–15 #〉)+CHR$(〈character #〉)

The command is slightly different for regular files:

Format:

"P"+CHR$(〈channel #〉)+CHR$(〈position bits 0–7 #〉)+
CHR$(〈position bits 8–15 #〉)+CHR$(〈position bits 16–23 #〉)+
CHR$(〈position bits 24–31 #〉)

For compatibility with other systems two more forms are avail-
able. These can’t be used to position beyond the end of file.

165

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

NOTE

These two command interfaces (F-P and F-P:) are not stable
(but works as expected), and the format may change in future.
(this does not depend on me of course) Avoid the use of these in
your programs for now.

Format:

"F-P"+CHR$(〈channel #〉)+CHR$(〈position bits 0–7 #〉)+
CHR$(〈position bits 8–15 #〉)+CHR$(〈position bits 16–23 #〉)+
CHR$(〈position bits 24–31 #〉)

"F-P:"; 〈channel #〉; 〈position bits 0–7 #〉; 〈position bits 8–15 #〉;
〈position bits 16–23 #〉; 〈position bits 24–31 #〉
Whenever a new position command is issued, it will flush the file’s

write buffer to disk if it was dirty. It’s possible to seek beyond the end
of file and write new data there, in this case the file will be extended
and those bytes between the old file end and the current position will
all become CHR$(0). It’s called a “hole”, because this part of file does
not use any disk space until it’s overwritten with useful data.

10 OPEN 15,12,15: OPEN 4,12,4,"FILE ,L"

20 P$=CHR$ (44) CHR$ (1) CHR$ (10)

30 PRINT#15,"P"CHR$ (4)P$

40 GET#4,A$:CLOSE 4:CLOSE 15

Listing 39: Seek in a relative file to the 300th record’s 10th byte and read it.
(counting begins at record 1 and byte 1)

10 OPEN 15,12,15: OPEN 4,12,4,"FILE"

20 P$=CHR$ (159) CHR$ (134) CHR$ (1) CHR$ (0)

30 PRINT#15,"P"CHR$ (4)P$

166

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

40 GET#4,A$:CLOSE 4:CLOSE 15

Listing 40: Seek in file to the 100000th byte and read it. (counting begins at
byte 0)

15.2 Filesystem management commands

15.2.1 Initialize

Initialize the filesystem. In case of disk change it redetects the filesys-
tem.
Format:

"I[〈partition #〉]"
Example:

@I
00, OK,000,000,000,000

15.2.2 Scratch

Delete a file, or more files. Multiple files are specified by wildcards,
or by a colon, which marks the beginning of a new pattern. The exact
filetype can be specified by ‘=’. For empty directories use ‘RD’! File
must have the DELETABLE flag set, and must be on a writable partition
in a writable directory.

NOTE

If the filetype is not given, it means any, so watch out! As there’s
no way to recover a deleted file, first try to list the directory with
the pattern to be sure to hit the right files.

167

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

Format:
"S[〈partition #〉]:〈file name〉[=〈file type〉][,〈file name〉[=〈file type〉]]"
"S[〈partition #〉][/〈path〉/]:〈file name〉[=〈file type〉]

[,[〈partition #〉][/〈path〉/]:〈file name〉[=〈file type〉]]"
Examples:

Delete all files in the current working directory:
@S:*
01, FILES SCRATCHED,028,000,000,000

Delete files called ‘FILE’ with any type:
@S:FILE
01, FILES SCRATCHED,003,000,000,000

Delete all files with type ‘BAK’:
@S:*=BAK
01, FILES SCRATCHED,009,000,000,000

Delete the file called ‘FILE,PRG’
@S:FILE=PRG
01, FILES SCRATCHED,001,000,000,000

Delete the file called ‘FILE,PRG’ in partition 3.
@S3:FILE=PRG
01, FILES SCRATCHED,001,000,000,000

Delete all files with file type ‘OLD’ and ‘BAK’ in directory called
‘STUFF’.
@S/STUFF/:*=OLD,*=BAK
01, FILES SCRATCHED,015,000,000,000

Delete all files with file type ‘OLD’ and ‘BAK’ in directory called
‘STUFF’, and everything from ‘STUFF/BAK’
@S/STUFF/:*=OLD,*=BAK,/STUFF/BAK/:*
01, FILES SCRATCHED,043,000,000,000

168

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

15.2.3 Rename and move

Rename or move a file or directory. The source and destination file
must be on the same partition, on a writable partition and in a writable
directory. The filetype can only be changed for regular files. To re-
name the directory header, use ‘R-H’, it’s described in section “15.6.5
Rename directory header”!

Moving files is not an atomic operation, this means you can lose
data if you turn off the computer at the wrong time! Because the
filesystem must be consistent at all time, the move operation takes
place by first writing out a non-closed version in the destination di-
rectory. If this succeeds then the original file gets removed, and finally
the destination will be closed. When moving a directory, the first test
non-closed entry will be a deleted one.

Format:

"R[〈partition #〉][/〈path〉/]:〈new file name〉[,〈file type〉]
=[/〈path〉/:]〈old file name〉[,〈file type〉]"

Examples:

Rename the file called ‘OLD,PRG’ to ‘NEW,SEQ’

@R:NEW,SEQ=OLD,PRG
00, OK,000,000,000,000

Move ‘OLD,PRG’ from directory ‘SOURCE’ into directory ‘DEST’
as ‘NEW,SEQ’

@R/DEST/:NEW,SEQ=/SOURCE/:OLD,PRG
00, OK,000,000,000,000

169

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

15.2.4 Lock

Change the protection flags of a file or directory. Locked files cannot
be written to or deleted. Write protected directories can’t be modified.

Format:

"L[〈partition #〉][/〈path〉/]:〈file name〉[,〈file type〉]"
The file must be on a writable partition and in a writable directory.

If the filetype is not given, it means any. This command operates only
on one file at a time.

Example:

Toggles WRITABLE and DELETABLE flags on ‘FILE,PRG’

@L:FILE,PRG
00, OK,000,000,000,000

15.2.5 Hide

Change the hidden flag of a file or directory. Hidden files or direc-
tories are not visible in the directory listing, but otherwise there’s no
difference. Use them with care, hidden files can easily produce direc-
tories which look like empty, but cannot be removed, because not all
hidden files were removed from them.

NOTE

This command interface is not stable (but works as expected), and
the format may change in future. (this does not depend on me of
course) Avoid the use of it in your programs for now.

Format:

170

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

"EH[〈partition #〉][/〈path〉/]:〈file name〉[,〈file type〉]"
The file must be on a writable partition and in a writable directory.

If the filetype is not given, it means any. This command operates only
on one file at a time.
Example:

Toggle the HIDDEN flag on ‘FILE,PRG’
@EH:FILE,PRG
00, OK,000,000,000,000

15.3 Partition management commands

If you want to get the list of partitions, then see section “5 Using
partitions”!

15.3.1 Change partition

These commands change the working partition. Partition 0 is not a
valid parameter for these commands.
Format:
"CP〈partition #〉"
"CP"+CHR$(〈partition #〉)
Examples:

Select partition 2
@CP2
02, PARTITION SELECTED,002,000,000,000

Select partition 3 the other way
open 15,12,15,"cP"+chr$(3):close 15

ready.
²

171

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

15.3.2 Get partition info

Get information about a partition. The returned data format is de-
scribed in Table 26.

Format:

"G-P"[+CHR$(〈partition #〉)]

Byte Value Meaning

0 0 not available
1 CFS partition

1 Unused
2 Partition number

3–18 Partition name
19–26 Unused
27–29 Size (65535)

Table 26: G-P data format

10 OPEN 15,12,15,"G-P"

20 GET#15,A$,B$,C$:CLOSE 15

30 PRINT"CURRENT PARTITION IS:"ASC(C$+CHR$ (0))

Listing 41: What’s the current partition?

10 OPEN 15,12,15,"G-P"+CHR$ (2)

20 GET#15,A$,B$,C$:CLOSE 15

30 IF A$="" THEN PRINT"NO SUCH PARTITION!"

Listing 42: Is partition 2 there?

172

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

15.4 Device management commands

15.4.1 Device number change

If you want to temporary change the device number (until next reset)
send ‘"U0>"+CHR$(〈new〉)’ to the device.

Format:

"U0>"+CHR$(〈new drive #〉)
"S-8"
"S-9"
"S-D"

Example:

This drive will be device 8 from now on

OPEN 15,12,15,"U0>"+CHR$(8):CLOSE15

An easier typed variant is the ‘S-8’, ‘S-9’ and ‘S-D’. The last one
restores the default device number.

Examples:

This drive will be device 8 from now on

@S-8
00, OK,000,000,000,000

Revert to default device number

@S-D
00, OK,000,000,000,000

173

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

15.4.2 Get disk change

The ‘G-D’ command can be used to get the disk change status byte,
which is followed by CHR$(13). If it’s non-zero then the disk has
been changed or removed since the last operation. Only the next
filesystem access will clear the disk change status.

10 OPEN 15,13,15,"G-D"

20 GET#15,A$,B$:CLOSE 15:A=ASC(A$+CHR$ (0))

30 IF A<>0 THEN PRINT"DISK CHANGED"

Listing 43: Disk change detection example

15.4.3 Identify drive

Sending ‘UI’ or ‘U9’ on command channel returns the DOS version of
the drive.
Format:
"UI"
"U9"

Example:

@UI
73, IDE DOS V0.90 IDE64,000,000,000,000

15.4.4 Reset drive

Sending ‘UJ’ or ‘U:’ on command channel reconfigures the drive.
Format:
"UJ"
"U:"

174

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

Example:

@UJ
73, IDE DOS V0.90 IDE64,000,000,000,000

15.4.5 Power management

It’s possible to enter or exit power saving mode if the drive supports
it.
Format:
"U0>P0"
"U0>P1"
"U0>P"

Examples:
Spin down drive

@U0>P0
00, OK,000,000,000,000

Spin up drive

@U0>P1
00, OK,000,000,000,000

Get power management state. Returned is 1 byte followed by
CHR$(13).

10 OPEN 15,12,15,"U0>"+CHR$ (208)

20 GET#15,A$,B$:CLOSE 15:A=ASC(A$+CHR$ (0))

30 IF A=0 THEN PRINT"STANDBY"

40 IF A=128 THEN PRINT"IDLE"

50 IF A=255 THEN PRINT"ACTIVE"

Listing 44: Get power state example

175

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

15.4.6 Eject or load medium

More useful on CD-ROM, DVD, Zip drive and LS-120 than on hard
disk. Don’t forget to unlock the medium before eject! (See “15.4.7
Lock or unlock medium”!)
Format:

"U0>E0"
"U0>E1"

Examples:

Load medium (CD-ROM and DVD only)

@U0>E0
00, OK,000,000,000,000

Eject medium

@U0>E1
00, OK,000,000,000,000

15.4.7 Lock or unlock medium

It’s possible to prevent medium removal on CD-ROM, DVD, Zip and
LS-120 drives.
Format:

"U0>L0"
"U0>L1"

Examples:

Unlock medium

@U0>L0
00, OK,000,000,000,000

176

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

Lock medium
@U0>L1
00, OK,000,000,000,000

15.4.8 Reading time from RTC

Sending ‘T-RA’ will read the current time in PETSCII, ‘T-RB’ in BCD,
while ‘T-RD’ in decimal.
Format:
"T-RA"
"T-RB"
"T-RD"

Byte Meaning

0 Day 0–6: 0→Sunday, 1→Monday, . . .
1 Year 00–99: 0→2000, . . . , 79→2079, 80→1980, . . .
2 Month 1–12: 1→January, . . .
3 Date 1–31
4 Hour 1–12
5 Minute 0–59
6 Second 0–59
7 AM/PM: 0→AM, else PM

Table 27: T-RB and T-RD data format

Example:
Get the current time in human readable form (day of week, month,

date, year, hour, minutes, seconds, AM or PM).
@T-RA
SAT. 08/07/04 07:42:48 PM

177

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

15.4.9 Format disk

Formatting of floppy disks is sometimes necessary to eliminate bad
sectors, or just bring the medium into a usable format. Formatting
changes the physical format, it does not create a filesystem on disk.
Use CFSfdisk13 to create a filesystem!

NOTE

During formatting the drive is not accessible (this can take more
than 30 min with a really bad disk), fortunately it’s possible to
use other drives meanwhile. But of course HDINIT will break for-
matting, so try to avoid using it.

Format:

"N=〈format code〉"

Code Meaning

720K Double density disk with 720 kB capacity (LS-120)
1.2M High density disk with 1200 kB capacity (LS-120)
1.44M High density disk with 1440 kB capacity (LS-120)
120M SuperDisk with 120 MiB capacity (LS-120)

Table 28: Disk format codes

Example:

Format a 1.44 MB disk

@N=1.44M
00, OK,000,000,000,000

13CFSfdisk is described in section “4 Preparing a blank disk”.

178

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

15.4.10 Write protect

Software write protect switch for the entire drive. This is not perma-
nent, but a simple reset won’t disable it.
Format:

"W-0"
"W-1"

Example:

Enable write protection.

@W-1
00, OK,000,000,000,000

15.5 Direct access commands

To learn more about direct access read section “8 Direct access”.

15.5.1 Identify

Format:

"B=R"+CHR$(〈channel #〉)+CHR$(0)+CHR$(0)+CHR$(0)+CHR$(0)

15.5.2 Buffer read

Format:

"B=R"+CHR$(〈channel #〉)+CHR$(〈head #〉)+
CHR$(〈cylinder bits 8–15 #〉)+CHR$(〈cylinder bits 0–7 #〉)+
CHR$(〈sector #〉)

"B=R"+CHR$(〈channel #〉)+CHR$(〈64+LBA bits 24–27 #〉)+

179

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

CHR$(〈LBA bits 16–23 #〉)+CHR$(〈LBA bits 8–15 #〉)+
CHR$(〈LBA bits 0–7 #〉)

15.5.3 Buffer position

Format:

"B=P"+CHR$(〈channel #〉)+CHR$(〈position bits 0–7 #〉)+
CHR$(〈position bits 8–15 #〉)

"B-P:"; 〈channel #〉; 〈position bits 0–7 #〉; 〈position bits 8–15 #〉

15.5.4 Buffer write

Format:

"B=W"+CHR$(〈channel #〉)+CHR$(〈head #〉)+
CHR$(〈cylinder bits 8–15 #〉)+CHR$(〈cylinder bits 0–7 #〉)+
CHR$(〈sector #〉)

"B=W"+CHR$(〈channel #〉)+CHR$(〈64+LBA bits 24–27 #〉)+
CHR$(〈LBA bits 16–23 #〉)+CHR$(〈LBA bits 8–15 #〉)+
CHR$(〈LBA bits 0–7 #〉)

15.6 Directory handling commands

To learn more about using directories see section “6 Using directo-
ries”.

15.6.1 Change working directory

All directories of the path must be executable.

180

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

Format:

"CD[〈partition #〉]:〈path〉"
"CD←"
"CD/〈path〉"

Example:

@CD:NEWDIR
00, OK,000,000,000,000

15.6.2 Change root directory

All directories of the path must be executable. Also the current work-
ing directory is changed to the new root. This command only works
on CFS formatted partitions. There’s no way to get back to the par-
tition’s real root directory, except the HDINIT BASIC command. A
simple reset won’t disable this.

Of course if you’ve changed the root directory of partition 1 on the
system drive, then the boot file, manager configuration file, plugins,
and the DOS wedge shell will be searched by IDEDOS according to
the new root directory.

Format:

"CR[〈partition #〉]:〈path〉"
"CR←"
"CR/〈path〉"

Example:

@CR:BBSSANDBOX
00, OK,000,000,000,000

181

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

15.6.3 Make directory

Create a directory. The new directory must be on a writable partition
and in a writable directory.
Format:
"MD[〈partition #〉][/〈path〉/]:〈directory name〉"
Example:

Create the directory called ‘NEWDIR’

@MD:NEWDIR
00, OK,000,000,000,000

15.6.4 Remove directory

Remove a directory. The directory must be on a writable partition and
in a writable directory. Watch out for hidden files if IDEDOS refuses
to remove an “empty” directory.
Format:
"RD[〈partition #〉][/〈path〉/]:〈directory name〉"
Example:

Remove the directory called ‘OLDDIR’

@RD:OLDDIR
01, FILES SCRATCHED,001,000,000,000

15.6.5 Rename directory header

Rename the directory header. The directory must be writable and on
a writable partition.
Format:

182

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

"R-H[〈partition #〉][/〈path〉/]:〈header〉"
Example:

Change the header of current directory to ‘NEW LABEL’
@R-H:NEW LABEL
00, OK,000,000,000,000

15.7 CD-ROM related commands

15.7.1 Read TOC

For detailed description see section “8 Direct access”.
Format:
"B=T"+CHR$(〈channel #〉)+CHR$(〈format #〉)+CHR$(〈starting track #〉)

15.7.2 Read sub-channel information

For detailed description see section “8 Direct access”.
Format:
"B=S"+CHR$(〈channel #〉)+CHR$(〈format #〉)+CHR$(〈starting track #〉)+

CHR$(〈mode #〉)

15.7.3 Audio playback

This command will play a part of audio CD. Start and end position is
specified in MSF (Minute 0–99, Second 0–59, Frame 0–74).

NOTE

For some reason audio tracks start always 2 seconds later than
specified in TOC, so for example the first audio track begins at 2
seconds.

183

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

Format:

"U0>CA"+CHR$(〈end frame #〉)+CHR$(〈end second #〉)+
CHR$(〈end minute #〉)+CHR$(〈start frame #〉)+
CHR$(〈start second #〉)+CHR$(〈start minute #〉)

15.7.4 Fast forward and reverse

This command starts fast forward and reverse from the specified po-
sition until the end of disc. The direction and the position format is
specified by the mode byte, as described in Table 29.

LBA position It’s specified in sectors from the beginning of the
disc, first byte is the least significant, and the fourth the most.

MSF position It’s the elapsed time from the beginning of the
disc, first byte is the frame, then second and minute, while the
fourth is reserved (0).

Track position It’s specified by the stating track number, which
is the 1st byte, the other 3 are reserved.

Format:

"U0>CF"+CHR$(〈pos1 #〉)+CHR$(〈pos2 #〉)+CHR$(〈pos3 #〉)+
CHR$(〈pos4 #〉)+CHR$(〈mode #〉)

Example:

Fast forward from track 2:

PRINT#15,"U0>CF"CHR$(2)CHR$(0)CHR$(0)CHR$(0)CHR$(128)

184

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

Bit Value Meaning

0–3 Unused

4 0 Forward
1 Reverse

5 Unused

6–7

0 LBA position
1 MSF position
2 Track position
3 Reserved

Table 29: Bits of fast forward and reverse mode byte

15.7.5 Pause, resume, and stop audio playback

Format:
"U0>CP0"
"U0>CP1"
"U0>CS"

Examples:
Pause playback

@U0>CP0
00, OK,000,000,000,000

Continue playback
@U0>CP1
00, OK,000,000,000,000

Stop playback
@U0>CS
00, OK,000,000,000,000

185

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

15.7.6 Volume control

This command lets control the output volume of CD-ROM drive. Out-
put/channel 0 is the left side, while output/channel 1 is the right.
Format:
"U0>CV"+CHR$(〈#〉)+CHR$(〈#〉)+CHR$(〈#〉)+CHR$(〈#〉)+

CHR$(〈#〉)+CHR$(〈#〉)+CHR$(〈#〉)+CHR$(〈#〉)

Byte Meaning

0 Output port 0 channel selection (0–15)
1 Output port 0 volume (0–255)
2 Output port 1 channel selection (0–15)
3 Output port 1 volume (0–255)
4 Output port 2 channel selection (0–15)
5 Output port 2 volume (0–255)
6 Output port 3 channel selection (0–15)
7 Output port 3 volume (0–255)

Table 30: Volume control format

10 OPEN 15,12,15

20 V$=CHR$ (2)+ CHR$ (128)+ CHR$ (1)+ CHR$ (128)

30 V$=V$+CHR$ (0)+ CHR$ (0)+ CHR$ (0)+ CHR$ (0)

40 PRINT#15,"U0>CV"V$

50 CLOSE 15

Listing 45: Reverse left and right speakers, and -6dB amplification

10 OPEN 15,12,15

20 V$=CHR$ (3)+ CHR$ (255)+ CHR$ (0)+ CHR$ (0)

30 V$=V$+CHR$ (0)+ CHR$ (0)+ CHR$ (0)+ CHR$ (0)

40 PRINT#15,"U0>CV"V$

186

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

Value Meaning

0 Output port muted
1 Audio channel 0
2 Audio channel 1
3 Audio channel 0 and 1 mixed
4 Audio channel 2
8 Audio channel 3

15 All mixed

Table 31: Output channel selection

50 CLOSE 15

Listing 46: Mono output on left speaker only, full volume

15.7.7 Volume settings query

This command returns the current settings from the CD-ROM drive
in a structure described in Table 30, plus a CHR$(13) at the end.
Format:
"U0>CV"

0 print"drive":input dr

10 open 15,dr ,15,"u0>cV"

20 get#15,a$

30 if a$<chr$ (16) then 60

40 input#15,b$,c$,d$,e$:rem error

50 print a$;b$,c$,d$,e$:goto 90

60 get#15,b$,c$,d$,e$,f$,g$,h$,i$

70 print"left channel:"asc(b$+chr$ (0))

80 print"right channel:"asc(d$+chr$ (0))

90 close 15

187

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

Listing 47: Print current volume setting

15.7.8 Medium type

This command returns the CD-ROM media type in one byte, plus a
CHR$(13) at the end.

Format:

"U0>CM"

0 PRINT"DRIVE":INPUT DR

10 OPEN 15,DR ,15,"U0>CM":GET#15,A$,B$:CLOSE 15

15 IF ST <>64 THEN PRINT"NOT SUPPORTED":END

20 T=ASC(A$+CHR$ (0)):A=T AND 15:B=INT(T/16)

30 IF B=7 AND A=0 THEN PRINT"NO CD IN DRIVE":END

40 IF B=7 AND A=1 THEN PRINT"TRAY OPEN":END

50 IF B=7 AND A=2 THEN PRINT"FORMAT ERROR":END

60 IF B=1 AND A<9 THEN PRINT"CD-R ";

70 IF B=2 AND A<9 THEN PRINT"CD-E ";

80 IF B=3 AND A=0 THEN PRINT"HD UNKNOWN":END

90 IF B=3 AND A=1 THEN PRINT"HD 120MM":END

100 IF B=3 AND A=5 THEN PRINT"HD 80MM":END

110 IF B>2 OR A>8 THEN PRINT"?":END

120 IF A>0 AND A<5 THEN PRINT"120MM "

130 IF A>4 AND A<9 THEN PRINT"80MM "

140 IF A=0 THEN PRINT"UNKNOWN"

150 IF A=1 OR A=5 THEN PRINT"DATA"

160 IF A=2 OR A=6 THEN PRINT"AUDIO"

170 IF A=3 OR A=7 THEN PRINT"DATA AND AUDIO"

180 IF A=4 OR A=8 THEN PRINT"MULTISESSION"

Listing 48: This small program will display the medium type in CD-ROM
drive

188

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

15.7.9 Drive capabilities

Returns the drive capabilities in 14 bytes with an extra CHR$(13) at
the end.
Format:
"U0>CC"

0 PRINT"DRIVE":INPUT DR

10 OPEN 15,DR ,15,"U0>CC":DIM C(14)

20 FOR A=0 TO 14:GET#15,A$:C(A)=ASC(A$+CHR$ (0))

25 NEXT:CLOSE 15

30 IF ST <>64 THEN PRINT"NOT SUPPORTED":END

35 PRINT"DRIVE CAPABILITIES:":PRINT

40 IF C(0) AND 1 THEN PRINT"READS CD-R"

50 IF C(0) AND 2 THEN PRINT"READS CD-RW"

60 IF C(0) AND 4 THEN PRINT"READS CD-R METHOD2"

70 IF C(0) AND 8 THEN PRINT"READS DVD -ROM"

80 IF C(0) AND 16 THEN PRINT"READS DVD -R"

90 IF C(0) AND 32 THEN PRINT"READS DVD -RAM"

100 IF C(1) AND 1 THEN PRINT"WRITES CD-R"

110 IF C(1) AND 2 THEN PRINT"WRITES CD-RW"

120 IF C(1) AND 4 THEN PRINT"WRITES SIMULATION"

130 IF C(1) AND 16 THEN PRINT"WRITES DVD -R"

140 IF C(1) AND 32 THEN PRINT"WRITES DVD -RAM"

150 IF C(2) AND 1 THEN PRINT"PLAYS AUDIO"

160 IF C(2) AND 2 THEN PRINT"AUDIO/VIDEO STREAM"

170 IF C(2) AND 4 THEN PRINT"DIGITAL OUT PORT1"

180 IF C(2) AND 8 THEN PRINT"DIGITAL OUT PORT2"

190 IF C(2) AND 16 THEN PRINT"READS MODE2 FORM1"

200 IF C(2) AND 32 THEN PRINT"READS MODE2 FORM2"

210 IF C(2) AND 64 THEN PRINT"READS MULTISESSION"

220 IF C(3) AND 1 THEN PRINT"READS CDDA"

230 IF C(3) AND 2 THEN PRINT"READS CDDA CONTINUE"

240 IF C(3) AND 4 THEN PRINT"RW SUPPORTED"

250 IF C(3) AND 8 THEN PRINT"RW CORRECTION"

260 IF C(3) AND 16 THEN PRINT"C2 POINTER SUPPORT"

270 IF C(3) AND 32 THEN PRINT"ISRC CODE SUPPORT"

189

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

280 IF C(3) AND 64 THEN PRINT"UPC CODE SUPPORT"

290 IF C(4) AND 1 THEN PRINT"MEDIA LOCKABLE"

300 PRINT"MEDIA CURRENTLY ";

302 IF (C(4) AND 2)=0 THEN PRINT"UN";

305 PRINT"LOCKED"

310 PRINT"MEDIA LOCK JUMPER ";

312 IF (C(4) AND 4)=0 THEN PRINT"NOT ";

315 PRINT"SET"

320 IF C(4) AND 8 THEN PRINT"MEDIA EJECTABLE"

330 PRINT"LOADING MECHANISM: ";:A=INT(C(4)/32)

340 IF A=0 THEN PRINT"CADDY"

350 IF A=1 THEN PRINT"TRAY"

360 IF A=2 THEN PRINT"POP -UP"

370 IF A=3 OR A>5 THEN PRINT"UNKNOWN"

380 IF A=4 THEN PRINT"CHANGER WITH DISCS"

390 IF A=5 THEN PRINT"CHANGER USING CARTRIDGE"

400 IF (C(5) AND 1)=0 THEN PRINT"NO ";

405 PRINT"SEPARATE VOLUME CONTROL"

410 IF (C(5) AND 2)=0 THEN PRINT"NO ";

420 PRINT"SEPARATE VOLUME MUTING"

430 IF C(5) AND 4 THEN PRINT"CAN REPORT SLOT"

440 IF C(5) AND 8 THEN PRINT"CAN SELECT SLOT"

450 SP=INT((C(6)*256+C(7)+88)/176)

460 PRINT"MAXIMUM SPEED:"SP"X"

470 PRINT"VOLUME LEVELS:"C(8)*256+C(9)

480 PRINT"BUFFER SIZE:"C(10)*256+C(11)"KB"

490 PRINT"CURRENT SPEED:";

500 PRINT INT((C(12)*256+C(13)+88)/176)"X"

Listing 49: This little longer program will display all information this com-
mand can return.

190

IDEDOS 0.90, February 24, 2019 COMMAND CHANNEL

15

15.8 Misc commands

15.8.1 Memory read

It’s included for compatibility. It reads from a fake ROM filled with
the message ‘IDE64 CARTRIDGE ’ or depending on the ‘CMD em-
ulation’ setting14 in the setup utility it can also be the text ‘CMD HD
EMULATED IDE64 CARTRIDGE ’.
Format:

"M-R"+CHR$(〈address bits 0–7 #〉)+CHR$(〈address bits 8–15 #〉)+
CHR$(〈number of bytes #〉)

15.8.2 Memory write

It’s included for compatibility, write to $77–$78 changes device num-
ber, otherwise it has no effect.
Format:

"M-W"+CHR$(〈address bits 0–7 #〉)+CHR$(〈address bits 8–15 #〉)+
CHR$(〈number of bytes #〉)+CHR$(〈first byte #〉)+. . .

15.8.3 Validate

It’s included for compatibility, has no effect. Use the CFSfsck15 util-
ity to check filesystem integrity.
Format:

"V[〈partition #〉]"

14See section “3.1.11 CMD emulation”.
15CFSfsck is described in section “19 Filesystem checking”.

191

15

COMMAND CHANNEL IDEDOS 0.90, February 24, 2019

192

IDEDOS 0.90, February 24, 2019 IDEDOS ERROR MESSAGES

16

16 IDEDOS error messages

These are the possible returned error codes on channel #15 with their
short descriptions.

00: OK (not an error)
The last action finished without errors.

01: FILES SCRATCHED (not an error)
This message appears after removing files or directories. The
first two numbers represent the number of files removed in little
endian order.

02: PARTITION SELECTED (not an error)
The partition selection was successful, the selected partition is
the first number.

NOTE

All message codes below 20 can be ignored, real errors have num-
bers of 20 or more.

20: READ ERROR (unrecoverable error)
Unrecoverable error, probably there’s a bad sector on medium.
The numbers represent the starting sector where the error hap-
pened.

21: READ ERROR (timeout during read)
Timeout happened while reading data from drive. Might be a
hardware problem. The numbers represent the starting sector
where the error happened.

193

16

IDEDOS ERROR MESSAGES IDEDOS 0.90, February 24, 2019

22: READ ERROR (unformatted medium)
The inserted medium needs to be formatted physically. This
message can also happen for a blank optical medium. The num-
bers represent the starting sector where the error happened.

23: READ ERROR (medium error)
Cannot read data due to bad block, read was aborted by drive.
The numbers represent the starting sector where the error hap-
pened.

25: WRITE ERROR (verify error)
Cannot write data due to bad block, or the written data does
not match. Write aborted. The numbers represent the starting
sector where the error happened.

26: WRITE PROTECT ON
The file, directory, partition or device is write protected, or the
drive reports a data protect error during write, or tried to write
to a write protected medium.

27: ACCESS DENIED
Cannot read the read the content of a non-readable directory, or
the drive reports data protect error during read. The numbers
represent the starting sector where the error happened.

28: WRITE ERROR (timeout during write)
Timeout happened while writing data to drive. Might be a hard-
ware problem. The numbers represent the starting sector where
the error happened.

29: DISK CHANGED
Disk change detected, all open files lost on the device.

194

IDEDOS 0.90, February 24, 2019 IDEDOS ERROR MESSAGES

16

30: SYNTAX ERROR (general syntax)
Syntax error in command, something is missing.

31: UNKNOWN COMMAND
Unknown or unimplemented command, or this command is not
supported by the drive.

32: SYNTAX ERROR (long line)
Command buffer overflow, the sent command string is too long
to fit in the buffer.

33: SYNTAX ERROR (invalid file name)
Illegal character in file name, or filetype, or unknown short file-
type. Do not use wildcards in the file name when creating files.

34: SYNTAX ERROR (missing file name)
Missing file name for command. Probably a missing colon.

39: PATH NOT FOUND
A part of path was not found, or tried to move file to differ-
ent partition using rename. Possible link loop found, or buffer
overflow during link expansion. Can also happen when access-
ing files with slash in the file name, but without using CMD
emulation.

50: RECORD NOT PRESENT
The record read is beyond the end of file, or tried to seek beyond
the end of file. This is not really an error, but it signals that the
file will be expanded.

195

16

IDEDOS ERROR MESSAGES IDEDOS 0.90, February 24, 2019

51: OVERFLOW IN RECORD
The written record got truncated, or tried to seek beyond the
end of record.

60: FILE OPEN ERROR
Better close opened files, before remove or move. Also do not
try to remove the working directory. Multiple open of an al-
ready open file is not allowed.

62: FILE NOT FOUND
The named file was not found.

63: FILE EXISTS
Cannot create file or directory with this name, or cannot rename
file to this name. Remove the existing file first, or use replace.

64: FILE TYPE MISMATCH
Cannot change this file type to the specified with rename, or
cannot create file with this type.

66: ILLEGAL REQUEST
Illegal request during read, tried to access beyond end of disk,
track 0 not found, or no such sector.

67: ILLEGAL REQUEST
Illegal request during write, tried to access beyond end of disk,
track 0 not found, or no such sector.

70: NO CHANNEL
Channel number incorrect for direct access commands, or for
the seek command. Tried to reopen an already open channel,

196

IDEDOS 0.90, February 24, 2019 IDEDOS ERROR MESSAGES

16

or no more free buffers left. Invalid direct access channel, di-
rectory read channel or relative file channel selected.

71: DIR ERROR
Directory header not found, or there’s no partition directory for
this filesystem.

72: PARTITION FULL
There’s no more space left on partition, or tried to create more
than 1023 entries in a directory.

73: IDE DOS V0.90 IDE64 (ide64, cdrom, fdd64, pclink)
Displayed after reset, it’s the DOS version, and drive type.
Might also happen if operation is unsupported on a non-native
filesystem.

74: DRIVE NOT READY
Drive not ready for command, there’s no disk in drive, or com-
mand aborted by drive. Can also happen on unexpected re-
sponse from drive.

75: FORMAT ERROR
Unknown filesystem on medium.

76: HARDWARE ERROR
The drive reports hardware error, or cabling problem, unreli-
able communication with drive. Try to use shorter IDE-cable
or ShortBus cable and connect the cartridge directly into the
computer.

197

16

IDEDOS ERROR MESSAGES IDEDOS 0.90, February 24, 2019

77: SELECTED PARTITION ILLEGAL
The selected partition does not exists, or the filesystem is un-
supported. The the first number is the illegal partition number.

198

IDEDOS 0.90, February 24, 2019 COMPATIBILITY

17

17 Compatibility

17.1 Hardware

17.1.1 Commodore serial drives, datassette

Of course they work. There’s also fastload support for 1541, 1570,
1571 and 1581. Datassette is supported, if KERNAL supports it.

17.1.2 SuperCPU accelerator

The SuperCPU IDEDOS expects emulation mode with direct page
starting at the 0th byte of bank 0, like normal. The high byte of reg-
ister A is not preserved during operation. Tested on SCPU64V2 with
SuperCPU DOS 2.04.

17.1.3 Retro Replay, Action Replay, Final Cartridge

These hardware use the same I/O space as the IDE64 cartridge, so
they won’t work.

17.1.4 RR-Net ethernet card, SilverSurfer serial port

Works fine when attached to the clock-port of the V4.1 or V4.2 ver-
sion of the cartridge. With V2.1 it works if Retro Replay is jumpered
to be flashed. (this way there’s no I/O space conflict) Versions V3.1,
V3.2, V3.4 and V3.4+ require a cartridge port expander, otherwise
it’s the same as for V2.1.

199

17

COMPATIBILITY IDEDOS 0.90, February 24, 2019

17.1.5 MMC64 cartridge

No conflict, but needs support in IDEDOS. Also there could be timing
problems resulting in unreliable operation.

17.1.6 CMD RamLink RAM expansion

Probably does not work on C64, but needs more testing. RL-DOS
won’t work with IDEDOS if using SuperCPU.

17.1.7 CMD HD series, CMD FD series

As these are serial drives and they should work. They are supported
by the manager too.

17.1.8 64HDD hard disk emulator

With some versions of the 64HDD hard disk emulator program you
have to turn off the “3.1.3 Disk fastloader” option in the setup. (The
problem is that 64HDD simply can’t deal with the multiple channels
open at the same time on the drive case. . .)

17.1.9 Commodore 128

Works in C64 mode, clears $D02F–$D030. The cartridge is not de-
signed for 2 MHz operation, so do not call IDE64 routines in 2 MHz
mode! C128 keyboard is available if cartridge has cartconfig register
and support is compiled in. (NUMERIC KEYPAD, CURSOR KEYS,
ESC, TAB, LINEFEED are available, HELP calls monitor, ALT and
NOSCROLL unused)

200

IDEDOS 0.90, February 24, 2019 COMPATIBILITY

17

17.1.10 JiffyDOS speed enhancement system

It’s detected and used. (tested with v6.01) The built-in DOS Wedge
has higher priority, if you want to use the JiffyDOS one then disable
it in the setup utility!

Loading, saving and file reading in manager is accelerated if the
drive has JiffyDOS, even if there’s no JiffyDOS ROM installed in
the computer (selectable at compile time). If you get sometimes a
‘?LOAD ERROR’ during the load of directory from a JiffyDOS drive,
then that’s not a bug in IDEDOS. The original JiffyDOS load routine
tries to workaround this by retrying IECIN, and this causes an endless
loop until STOP is pressed. I prefer getting an error over waiting
forever. . .

17.1.11 Dolphin DOS

Loading a file and copying in manager is accelerated if the drive has
Dolphin DOS and parallel cable, even if there’s no Dolphin DOS
ROM installed in the computer (selectable at compile time). Saving
is slower then usual, around 2 kB/s.

17.1.12 NTSC/PAL systems

Both works, there should be no timing issues.

17.1.13 RAM Expansion Unit

Works, not touched. RamDOS does not work, but if someone is in-
terested it’s possible to support it.

201

17

COMPATIBILITY IDEDOS 0.90, February 24, 2019

17.1.14 Second SID

Supported, base location has to be selected on compile. The default
is $D420. (it’s muted on STOP + RESTORE, and the manager can use
it for warning sound)

17.1.15 +60K memory expansion

Works, not touched.

17.1.16 CBM IEEE-488 interface

IEEE-488 does not work, because the IDE64 cartridge cannot manip-
ulate the EXROM line.

17.1.17 SwiftLink-232 ACIA cartridge

The registers of SwiftLink-232 are mirrored in the whole I/O area,
but after some modifications it works. Supported for serial PCLink.

17.1.18 Turbo232 UART cartridge

Works fine, may need an cartridge port expander. Supported for serial
PCLink by IDEDOS.

17.1.19 CHS or LBA hard disk

Use modern LBA capable hard disks and LBA formatted partitions if
possible. Then it’s much faster to scratch files, check filesystem, etc.

202

IDEDOS 0.90, February 24, 2019 COMPATIBILITY

17

because there’s no CHS→LBA→CHS translation. This translation is
slow due to multiplications and divisions required for the conversion.

17.2 Software

This version of IDEDOS does not support auto starting programs, so
use the KILL command before loading them from floppy.

Programs using serial bus specific routines, custom loaders (IRQ
or fast loaders), and direct disk access won’t work with IDEDOS de-
vices of course, as the IDE64 cartridge is neither attached to the serial
bus, nor is a floppy drive emulator.

203

17

COMPATIBILITY IDEDOS 0.90, February 24, 2019

204

IDEDOS 0.90, February 24, 2019 UPDATING IDEDOS

18

18 Updating IDEDOS

Figure 8: 128 KiB
PEROM upgrade for
cartridges older than
V3.4+

The IDE64 interface cartridge is equipped with
64, 128 or 512 KiB flash memory (AT29C512,
AT29C010, SST39SF040) for the firmware.
The content of flash memory is non-volatile
and can be updated, so you can always run the
latest firmware with the new features and bug
fixes.

Updating IDEDOS is very easy and does
not require any special skills. The cartridge
was designed so that it’s always possible to up-
date the firmware even if it was messed up, so
you can’t render your cartridge unusable by an
interrupted update or wrong firmware.

With a SuperCPU equipped machine it’s
necessary to change between the two versions
of IDEDOS depending on the presence of Su-
perCPU. Updating firmware every time you
want to use IDE64 with or without the SuperCPU can be frustrat-
ing. By using a 128 or 512 KiB flash memory it’s possible to change
the firmware fast and avoid time wasting updates. (starting from ver-
sion V3.4+ of the cartridge, upgrade of older cartridges is possible
but requires soldering and electronic skills!)

Here’s a short guide to updating IDEDOS:

1. Get the latest Perom programmer and the new firmware and
copy both to a serial bus drive. (e.g. floppy drive, CMD HD,

205

18

UPDATING IDEDOS IDEDOS 0.90, February 24, 2019

etc.) If you’ve got a PCLink cable it’s also possible to use it for
update. (and it’s much faster)

2. Plug the cartridge into the expansion port first, while the com-
puter is switched off. Removing of SuperCPU is not necessary,
it can speed up the update (JiffyDOS and 20 MHz), however if
you are having trouble you may remove it. The IDE64 V4.1
and V4.2 cartridge can only be updated when the SuperCPU is
disabled.

Figure 9: Location of the PGM pin on different cards

3. There are two squares near the big Lattice chip and the 8 pin
DS1302 called PGM. By connecting these 2 squares on board
together you can enable flash update. (use screwdriver) Newer
version of the IDE64 cartridge have pins instead of squares,
and you have to use a jumper to connect them. (see picture)
The V4.1 and V4.2 cartridge has the programming jumper near
the IDE port.

4. If using a greater than 64 KiB flash memory, then select the
bank you want to program by the switch!

206

IDEDOS 0.90, February 24, 2019 UPDATING IDEDOS

18

WARNING!
Never change bank or set the programming pins while IDEDOS
is running! You will trash your disks seriously.

5. Now you can turn on your computer or press reset if it’s al-
ready on. The green led should blink now, except if you have
your SuperCPU enabled, then it’s off. If the led is steady on
it means the flash write protect is still enabled, this case retry
from the beginning. (it’s not easy to connect the 2 squares on
older cartridges for the first try. . .)

6. The normal C64 screen should appear, the only difference is
that there are now only ‘30719 BYTES FREE’. Now you can
remove the screwdriver or jumper.

7. Load the Perom programmer and start it. It should start with
the screen shown in the picture. (if using v1.1) Now you may
backup your current IDEDOS if you want, and update to the
latest from PCLink or disk. At least version v1.5 is required for
the V4.1, version v1.9 for the V4.2 cartridge. Now select the
action with the CRSR keys and hit RETURN.

NOTE

Erasing of PEROM chip is not needed before programming, so
do not select it unless you have reasons to do so. It cleans out all
64 KiB banks!

207

18

UPDATING IDEDOS IDEDOS 0.90, February 24, 2019

Figure 10: The Perom programmer utility

8. After selecting one of the update menu items the program will
ask for device number and filename. Leaving the filename
blank cancels the update. If the program says it cannot find
the PEROM then make sure you removed the jumper! (also
it’s not recommended using pencil for connecting the squares
because the remaining carbon may permanently connect them
unless cleaned)

9. If the filename was correct and the PCLink server was run-
ning then the programming should start. A box filled with
characters will appear on screen each character representing a
128 byte sector of flash memory. During the rewrite this area
will be filled. If finished you get an “Update successful” mes-
sage. If hexadecimal numbers appear in the right corner of the

208

IDEDOS 0.90, February 24, 2019 UPDATING IDEDOS

18

screen and you get “Update failed” then better clean the con-
tacts of your cartridge and connect it directly without any port
expander. This can also mean that you’ve exceeded the typical
10000 rewrites for some sectors, which is very unlikely. (or the
flash memory is just failing for some other unknown reason)
Also disk errors may interrupt the update, this case get a new
disk and retry the update.

10. Now if ready (“Update successful”) you may leave the program
and press reset to start the new firmware. If using older versions
of the firmware (before 0.9x) then power cycle the computer!

209

18

UPDATING IDEDOS IDEDOS 0.90, February 24, 2019

210

IDEDOS 0.90, February 24, 2019 FILESYSTEM CHECKING

19

19 Filesystem checking

As you might already noticed there’s no built in “validate” command
in IDEDOS. This is not a mistake, checking and repairing the com-
plex structures of the CFS filesystem as fast as possible needs lots of
memory, and sometimes choices have to be made.

The filesystem integrity check tool for the CFS filesystem is called
“CFS 0.11 Filesystem check v0.05a”, or short “CFSfsck”.

The partition table integrity is checked by the CFSfdisk tool. Each
partition holds a separate CFS filesystems, this is what’s checked by
CFSfsck.

This tool can check one filesystem (partition) at a time by look-
ing into all directories and checking all metadata for problems. It
will automatically recover space not allocated to any file (not likely,
but non-closed files may sometimes cause this), and allocates non-
allocated file data if any (this shouldn’t happen). Also it’ll remove all
non-closed files. Everything else needs a confirmation.

19.1 Using CFSfsck

After start the tool it will ask for the device, type of drive, and parti-
tion. Only the LS-120 and Zip drives are floppy drives.

Drive numbers: 0 = primary master, 1 = primary slave, 2 = sec-
ondary master, 3 = secondary slave.

The process can take a few minutes, 100 MiB is done in ∼6 min,
but this is may vary with the configuration. Using modern LBA ca-
pable disks and enabling of the SuperCPU will help a lot. For a min-
imal speed up hold SHIFTLOCK down. (only the RIGHTSHIFT + C=
combo can be used to toggle the character set)

211

19

FILESYSTEM CHECKING IDEDOS 0.90, February 24, 2019

There can be various error messages with questions. Turn up the
volume, and you’ll notice the alarm sound when there’s any need for
further user action.

After CFSfsck finishes various filesystem statistics like disk space
used, number of files and directories gets displayed as a bonus. Also
during the process you can watch the upper part of the screen for
progress indication.

19.2 Errors and resolutions

Here’s a list of possible errors during the filesystem check:

Invalid root directory The root directory is not inside the partition,
or does not have a valid signature, or could not be read because
of a disk error.
Choices: none
Fix: Manually by disk editor, or reformatting of the partition.

Invalid filename Some special characters reserved for internal use
(e.g. wildcards) were found in filename or filetype.
Choices: Ignore: do nothing, Fix: replace them with space

Directory structure too deep Directory nesting too deep, CFSfsck
has run out of memory.
Choices: none
Fix: Move deep directories around manually, and rerun CFSf-
sck.

Invalid directory The directory does not have a valid signature, or
could not be read because of a disk error.

212

IDEDOS 0.90, February 24, 2019 FILESYSTEM CHECKING

19

Choices: Ignore: Do nothing, Remove: Delete the directory,
Abort: exit

Filelength too short There’s additional data beyond the file’s end,
which cannot be accessed, because the file’s size in the direc-
tory entry is incorrect. Most likely the file was not closed after
an append, or relative file expansion.
Choices: Ignore: Do nothing, Fix: Increase the file’s length.
Note: If the current size is OK, then make a copy of this file
and delete the original. This may be the case with some old
beta IDEDOS 0.9x versions.

Crosslinked file Blocks belonging to this file are already allocated
in another file.
Choices: Ignore: Do nothing, Remove: Delete the file, Abort:
exit
Note: It’s not sure that actually this file is damaged, maybe the
other one is overwritten by this one. Check this file manually,
and if OK, do a copy before removing.

Invalid sector address A sector belonging to a file is not in partition
bounds or could not be read because of a disk error.
Choices: Ignore: Do nothing, Remove: Delete the file, Abort:
exit
Note: You may recover parts of the file by trying to copy it.

Crosslinked directory Directory blocks already allocated in another
file.
Choices: Ignore: Do nothing, Truncate: Truncate the direc-
tory list, Abort: exit

213

19

FILESYSTEM CHECKING IDEDOS 0.90, February 24, 2019

Invalid directory sector A block belonging to the directory is not in
partition bounds or could not be read because of a disk error.
Choices: Truncate: Truncate the directory list, Abort: exit

Write error Disk error during write, probably a bad sector
Choices: Retry: Retry, Abort: exit

Read error Disk error during read, probably a bad sector
Choices: Retry: Retry, Ignore: Sure, I know it’s bad, do
something, Abort: exit

CFS disklabel not found Disk is unformatted, or wrong version of
filesystem.
Fix: Fix: Write new ident, Abort: exit
Note: Make sure that this version of CFSfsck is the right one
for this version of IDEDOS.

Unknown filetype The filetype is not regular, relative, directory or
link.
Choices: Ignore: Do nothing, Remove: Delete the file, Abort:
exit
Note: Make sure that this version of CFSfsck is the right one
for this version of IDEDOS.

214

IDEDOS 0.90, February 24, 2019 FREQUENTLY ASKED QUESTIONS

20

20 Frequently Asked Questions

I copied some programs from floppy to IDE64, but some of
them got shorter by a few blocks. Is this a bug?
No, it’s just a difference of block size. Traditional CBM and
CMD equipment has a block size of 254 bytes, while IDE64
drives have a virtual 256 byte block size (in reality it’s 512 or
2048 bytes depending on the medium used). A program which
is 49920 bytes long will be 197 block long on floppy and 195
on IDE64.

Is it true that IDE64 can only be used to store one filer
games?
Unfortunately most multi part games are written too 1541 or
serial bus specific. If you want your favourite game fixed for
IDE64, then ask someone who is able to do this. Looking at the
IDE64 warezsite will give you some hints about these persons
or groups. ;-) And no, you can use IDE64 for much more!

Will IDE64 read/write my DOS formatted floppy with LS-
120, or my CompactFlash card from my camera?
Yes, IDEDOS can read FAT12/16/32 filesystems up to 128 GiB
with or without partition table up to 8 partitions per drive. Clus-
ter sizes of power of two from 0.5–64 KiB will work. Only
short filenames are supported, and the drive holding the FAT
partitions must not contain an IDE64 filesystem. Due to mem-
ory limitations there won’t be direct write support included in
IDEDOS, this must be coded as an external application. And
no, NTFS won’t be ever supported. (unless you code it)

215

20

FREQUENTLY ASKED QUESTIONS IDEDOS 0.90, February 24, 2019

How comes all the stuff to an IDEDOS filesystem?
The easiest way is to get a CD-ROM and burn all your stuff to
CD, and then use the builtin file manager to copy files. Also
you can use Star Commander or similar utility with a floppy
drive. You can use a virtual serial bus drive emulation program
like 64HDD too. Or build or buy a PCLink cable and use that
for the transfer. Also it’s possible to use Contiki or Wings with
an Ethernet cartridge and download the stuff from the Internet.
The fastest method is to use the CFS 0.11 FUSE module for
mounting and filling the filesystem. Also you can use VICE on
Linux to transfer to files when the emulated disk is the block
device with the correct geometry. Or use a whole-disk imaging
program on windows and configure the image for VICE.

Ok, now I want to backup my IDE64 drive. What are the
possibilities?
As the file manager supports recursive copying it’s only a mat-
ter of selecting all the directories you want, and then copy it to
another drive. (like another HDD, ZIP disk, LS-120 disk, Com-
pactFlash card, PCLink, CMD drive, floppy, 64HDD, etc.) Be-
ware of limited filename and directory support of non-IDE64
drives! Also you can mount CFS disks on Linux and other
systems using the CFS 0.11 filesystem driver for FUSE. Al-
ternatively it’s possible use ’dd’ to create an image on POSIX
systems, or any whole-disk imaging backup program.

216

IDEDOS 0.90, February 24, 2019 GNU FDL

21

21 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifica-
tions made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of sub-
ject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed

217

http://fsf.org/

21

GNU FDL IDEDOS 0.90, February 24, 2019

as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Docu-
ment or a portion of it, either copied verbatim, or with modifications and/or translated
into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic trans-
lation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been ar-
ranged to thwart or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed

218

IDEDOS 0.90, February 24, 2019 GNU FDL

21

for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such follow-
ing pages as are needed to hold, legibly, the material this License requires to appear in
the title page. For works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of the work’s title, preceding
the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Docu-
ment to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned be-
low, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.)
To “Preserve the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are considered
to be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

219

21

GNU FDL IDEDOS 0.90, February 24, 2019

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added ma-
terial. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the con-
ditions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

220

IDEDOS 0.90, February 24, 2019 GNU FDL

21

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is no section Entitled “History” in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the orig-
inal publisher of the version it refers to gives permission.

221

21

GNU FDL IDEDOS 0.90, February 24, 2019

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be in-
cluded in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qual-
ify as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS

222

IDEDOS 0.90, February 24, 2019 GNU FDL

21

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sections of all of the original doc-
uments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents re-
leased under this License, and replace the individual copies of this License in the var-
ious documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution medium,
is called an “aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply

223

21

GNU FDL IDEDOS 0.90, February 24, 2019

to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the Doc-
ument’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided under this License. Any attempt otherwise to copy, modify, subli-
cense, or distribute it is void, and will automatically terminate your rights under this
License.

However, if you cease all violation of this License, then your license from a par-
ticular copyright holder is reinstated (a) provisionally, unless and until the copyright
holder explicitly and finally terminates your license, and (b) permanently, if the copy-
right holder fails to notify you of the violation by some reasonable means prior to 60
days after the cessation.

Moreover, your license from a particular copyright holder is reinstated perma-
nently if the copyright holder notifies you of the violation by some reasonable means,

224

IDEDOS 0.90, February 24, 2019 GNU FDL

21

this is the first time you have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to 30 days after your receipt
of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your rights
have been terminated and not permanently reinstated, receipt of a copy of some or all
of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World
Wide Web server that publishes copyrightable works and also provides prominent facil-
ities for anybody to edit those works. A public wiki that anybody can edit is an example
of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a prin-
cipal place of business in San Francisco, California, as well as future copyleft versions
of that license published by that same organization.

225

http://www.gnu.org/copyleft/

21

GNU FDL IDEDOS 0.90, February 24, 2019

“Incorporate” means to publish or republish a Document, in whole or in part, as
part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC,
and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the title
page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is in-
cluded in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

226

IDEDOS 0.90, February 24, 2019 THE SHORTBUS

A The ShortBus

This section is about the ShortBus connector of the IDE64 cartridge.
It’s a 34 pin connector containing a selection of processor and some
extra decoded signals. It was designed for connecting extra hardware
to the IDE64 cartridge.

On IDE64 V4.1 the jumper JP2 located next to the ShortBus con-
nector can be used to swap the meaning of CSEL0 and CSEL1 sig-
nals when shorted. This swaps the address range $DE00–$DE0F with
$DE10–$DE1F.

On IDE64 V4.2 the CSEL2 and CSEL3 signals are not available
as they were reused for addressing.

WARNING!
Although it’s looking similar to a pc floppy connector but it is
not a floppy controller interface, so never connect a floppy drive
or other non-ShortBus hardware, or you’ll damage your C64 or
IDE64 card!

Here’s a short description of ShortBus peripherals I’m aware of.

Figure 11: ShortBus female cable connector

ETH64 – Ethernet card
A LAN91C96 chip based Ethernet card. Chip features: Full du-
plex switched Ethernet support; Enhanced transmit queue man-
agement; 6 KiB of on-chip RAM; Supports IEEE 802.3 (ANSI

227

THE SHORTBUS IDEDOS 0.90, February 24, 2019

8802-3) Ethernet standards; Automatic detection of TX/RX po-
larity reversal; Enhanced power management features; Receive
counter for enhanced early receive; Packet memory manage-
ment unit; Automatic retransmission, bad packet filtering, and
transmit padding; External and internal loopback modes; Four
direct driven LED outputs for status and diagnostics.

There are 2 jumpers on board: JP1 for selecting address space
$DE00–$DE0F (1-2, CSEL0) and $DE10–$DE1F (2-3, CSEL1),
and JP2 for enabling NMI generation. It’s supported by Con-
tiki, Wings and some other software.

For more information visit http://www.ide64.org/
Chip datasheet can be found at http://www.smsc.com/

DUART – dual port RS-232 interface
A XR68C681 based dual RS-232 card featuring: Two full du-
plex, independent channels; Asynchronous receiver and trans-
mitter; Dual buffered transmitter, quadruple-buffered receiver;
Programmable stop bits in 1/16 bit increments; Internal baud rate
generators with 23 different baud rates from 50 to 115200; In-
dependent baud rate selection for each transmitter and receiver;
Normal, autoecho, local loopback and remote loopback modes;
Multi-function 16 bit counter or timer; Interrupt output with
eight maskable interrupt conditions; Interrupt vector output on
acknowledge; 8 general purpose outputs; 6 general purpose in-
puts with change of states detectors on inputs; Standby mode
to reduce operating power.

There are 2 jumpers on board: JP1 for selecting address space
$DE00–$DE0F (1-2, CSEL0) and $DE10–$DE1F (2-3, CSEL1),

228

http://www.ide64.org/
http://www.smsc.com/

IDEDOS 0.90, February 24, 2019 THE SHORTBUS

and JP2 for enabling NMI generation. It’s supported by Con-
tiki, Wings, Novaterm 9.6 and some other software.

For more information visit http://www.ide64.org/
Chip datasheet can be found at http://www.exar.com/

DigiMAX – 4 channel 8 bit DAC
A MAX506 based 4 channel 8 bit digital to analog converter
card. Simple programming interface, 4 registers represent the
four outputs, the written byte will appear as a voltage level be-
tween 0 V and 5 V. The output comes out on 2 jack plugs.
This card is supported by Modplay, Wings and maybe some
other programs. The base address is selectable by jumper: IO1
$DE40–$DE47 or IO2 $DE48–$DE57.

For more information visit
http://www.jbrain.com/vicug/gallery/digimax/
Chip datasheet can be found at http://www.maxim-ic.com/

ETFE – Ethernet card
CS8900 based Ethernet card, featuring: Full duplex operation;
4 KiB RAM buffer for transmit and receive frames; Automatic
polarity detection and correction; Automatic re-transmission
on collision; Automatic padding and CRC generation; Auto-
matic rejection of erroneous packets; LED drivers for link sta-
tus and LAN activity; Standby and suspend sleep modes.

The Ethernet card has one jumper only, which enables chip re-
set. The jumpers on the ShortBus interface: JP7 selects address
space $DExx (1-2), $DFxx (2-3). If JP7 is set to 1-2, then JP5 se-
lects $DE00–$DE0F (1-2, CSEL0), $DE10–$DE1F (2-3, CSEL1).

229

http://www.ide64.org/
http://www.exar.com/
http://www.jbrain.com/vicug/gallery/digimax/
http://www.maxim-ic.com/

THE SHORTBUS IDEDOS 0.90, February 24, 2019

If the address space is set to $DFxx, then JP8 selects the exact
memory location. The card works fine with Contiki and soft-
ware supporting the original TFE card.

For more information visit http://c64.rulez.org/etfe/
Chip datasheet can be found at http://www.cirrus.com/

230

http://c64.rulez.org/etfe/
http://www.cirrus.com/

IDEDOS 0.90, February 24, 2019 THE SHORTBUS

Pin Name Description

1 GND Ground
2 VCC +5 V
3 RESET Reset signal, active low
4 CSEL4 Chip select signal, active high $DE58–$DE59
5 R/W Read/Write signal from processor
6 CSEL3 Chip select signal, active low $DE48–$DE57
7 φ2 Phi2 clock signal from processor
8 CSEL2 Chip select signal, active low $DE38–$DE47
9 BA Bus Available, control signal from VIC II

10 CSEL1 Chip select signal, active low $DE10–$DE1F
11 DOT clock Clock signal from VIC II
12 CSEL0 Chip select signal, active low $DE00–$DE0F
13 NMI Non-Maskable Interrupt, active low
14 I/O2 Chip select signal, active low
15 IRQ Interrupt Request, active low
16 I/O1 Chip select signal, active low
17 D7 Data bus bit 7
18 A7 Address bus bit 7
19 D6 Data bus bit 6
20 A6 Address bus bit 6
21 D5 Data bus bit 5
22 A5 Address bus bit 5
23 D4 Data bus bit 4
24 A4 Address bus bit 4
25 D3 Data bus bit 3
26 A3 Address bus bit 3

231

THE SHORTBUS IDEDOS 0.90, February 24, 2019

27 D2 Data bus bit 2
28 A2 Address bus bit 2
29 D1 Data bus bit 1
30 A1 Address bus bit 1
31 D0 Data bus bit 0
32 A0 Address bus bit 0
33 VCC +5 V
34 GND Ground

Table 32: ShortBus pinout

232

IDEDOS 0.90, February 24, 2019 THE CLOCK-PORT

B The clock-port

This section is about the clock-port connector of the IDE64 V4.1 and
V4.2 cartridge. It’s a 22 pin connector containing a selection of pro-
cessor and some extra decoded signals. It can be used to connect
extra hardware to IDE64. Unlike other cartridges all 16 registers are
accessible for a better compatibility with Amiga accessories.

The JP2 jumper located near to the ShortBus connector is for
swapping the address range $DE00–$DE0F with $DE10–$DE1F. This
jumper affects the ShortBus addresses too.

WARNING!
When using ShortBus cards and clock-port devices at the same
time, make sure that the ShortBus device is configured to not use
the CSEL0 signal, otherwise the address collision could damage
the cards, C64 or IDE64 card!

Here’s a short description of clock-port peripherals I’ve heard of.

ETH64 II – Ethernet card
A LAN91C96 chip based Ethernet card. This chip features:
Full duplex operation; Supports enhanced transmit queue man-
agement; 6 KiB of on-chip RAM; Supports IEEE 802.3 (ANSI
8802-3) Ethernet standards; Automatic detection of TX/RX po-
larity reversal; Enhanced power management features; Simul-
Tasking early transmit and early receive functions; Enhanced
early transmit function; Receive counter for enhanced early re-
ceive; Hardware memory management unit; Automatic retrans-
mission, bad packet rejection, and transmit padding; External

233

THE CLOCK-PORT IDEDOS 0.90, February 24, 2019

and internal loopback modes; Four direct driven LED outputs
for status and diagnostics.

There’s one jumper on board for enabling NMI generation. The
card is supported by Contiki, Wings and some other software.

The ETH64 II needs all 16 registers of the clock-port for correct
operation, which makes it incompatible with cartridges which
do not provide them all. (e.g. Retro Replay)

For more information visit http://www.ide64.org/eth64v2.html
Chip datasheet can be found at http://www.smsc.com/

RR-Net – Ethernet card
CS8900 based Ethernet card, featuring: Full duplex operation;
4 KiB RAM buffer for transmit and receive frames; Automatic
polarity detection and correction; Automatic re-transmission
on collision; Automatic padding and CRC generation; Auto-
matic rejection of erroneous packets; Boundary scan and loop-
back test; Link status and LAN activity LEDs; Standby and
suspend sleep modes.

The card works fine with Contiki and software supporting the
RR-Net card.

For more information visit
http://www.schoenfeld.de/inside/Inside_RRnet.txt
Chip datasheet can be found at http://www.cirrus.com/

SilverSurfer – RS-232 interface
16C550 based RS-232 card, featuring: Asynchronous receiver
and transmitter; Full duplex operation; 16 byte transmit and
receive FIFO; Baud rate generator for rates from 50 to 460800.

234

http://www.ide64.org/eth64v2.html
http://www.smsc.com/
http://www.schoenfeld.de/inside/Inside_RRnet.txt
http://www.cirrus.com/

IDEDOS 0.90, February 24, 2019 THE CLOCK-PORT

The card works fine with Novaterm.

For more information visit
http://rr.c64.org/silversurfer/docs/Inside_RetroSurfer.txt

MP3@64 – MPEG 1/2 Layer 2/3 Audio decoder
MAS3507 based MPEG decoder card, featuring: MPEG 1/2
layer 2 and 3 decoder; support for MPEG 2.5 low bit rates;
Variable bit rate support; Up to 320 kbit and 48 kHz.

The card can be used to play MP3 files with a Manager plugin.

For more information visit
http://www.schoenfeld.de/inside/Inside_MP3AT64.txt

235

http://rr.c64.org/silversurfer/docs/Inside_RetroSurfer.txt
http://www.schoenfeld.de/inside/Inside_MP3AT64.txt

THE CLOCK-PORT IDEDOS 0.90, February 24, 2019

Pin Name Description

1 GND Ground
2 VCC +5 V
3 NMI Non-Maskable Interrupt, active low
4 CSEL0 Chip select signal, active low $DE00–$DE0F
5 NC Not connected
6 NC Not connected
7 IORD Read signal, active low
8 IOWR Write signal, active low
9 A3 Address bus bit 3

10 A2 Address bus bit 2
11 A1 Address bus bit 1
12 A0 Address bus bit 0
13 D7 Data bus bit 7
14 D6 Data bus bit 6
15 D5 Data bus bit 5
16 D4 Data bus bit 4
17 D3 Data bus bit 3
18 D2 Data bus bit 2
19 D1 Data bus bit 1
20 D0 Data bus bit 0
21 GND Ground
22 RESET Reset signal, active low

Table 33: Clock-port pinout

236

IDEDOS 0.90, February 24, 2019 MORE INFORMATION

C More information

Online resources about the IDE64 cartridge and related material. It’s
just a short collection, so you may also use your searching skills to
get more. ;-)

C.1 Related Internet sites

The IDE64 project homepage http://ide64.org/
The IDE64 project’s homepage with information about the car-
tridge, peripherals, and lot more.

The IDE64 Information Portal http://news.ide64.org/
The latest news concerning IDE64.

The IDE64 warez site http://warez.ide64.org/
Lots of stuff to fill your empty disks.

The IDEDOS project page http://idedos.ide64.org/
The latest version of IDEDOS can be found here.

The IDE64 list http://groups.google.com/group/ide64/
Subscribe to the list and get your questions answered.

C.2 Distributors

The IDE64 card is currently not available through distributors, please
ask Josef directly at soucek.josef@gmail.com for pricing and avail-
ability.

237

http://ide64.org/
http://news.ide64.org/
http://warez.ide64.org/
http://idedos.ide64.org/
http://groups.google.com/group/ide64/

MORE INFORMATION IDEDOS 0.90, February 24, 2019

238

IDEDOS 0.90, February 24, 2019 ACRONYMS

D Acronyms

ACIA Asynchronous Communications Interface Adapter

ATA AT Attachment

ATAPI ATA Packet Interface

ATIP Absolute Time In Pre-groove

ATX Advanced Technology Extended

BCD Binary Coded Decimal

CBM Commodore Business Machines

CD Compact Disc

CD-ROM Compact Disc Read Only Memory

CF CompactFlash

CFS Commodore File System

CHS Cylinder Head Sector

CIA Complex Interface Adapter

CMD Creative Micro Designs

CRC Cyclic Redundancy Check

DOS Disk Operating System

DVD Digital Versatile Disc

DUART Dual Universal Asynchronous Receiver/Transmitter

EOF End Of File

FAT File Allocation Table

FIFO First In, First Out

239

ACRONYMS IDEDOS 0.90, February 24, 2019

IDE Integrated Drive Electronics

IRQ Interrupt Request

ISRC International Standard Recording Code

LAN Local Area Network

LBA Logical Block Addressing

LED Light-Emitting Diode

MBR Master Boot Record

MMC MultiMediaCard

MSF Minute Second Frame

NMI Non-Maskable Interrupt

NTFS New Technology File System

PEROM Programmable Erasable Read Only Memory

PETSCII PET Standard Code of Information Interchange

PMA Program Memory Area

RAM Random Access Memory

REU RAM Expansion Unit

ROM Read-Only Memory

RTC Real-time clock

SCPU SuperCPU

SCSI-MMC SCSI MultiMedia Commands

SD Secure Digital

SDHC Secure Digital High Capacity

240

IDEDOS 0.90, February 24, 2019 ACRONYMS

SID Sound Interface Device

TOC Table Of Contents

UART Universal Asynchronous Receiver/Transmitter

UDF Universal Disk Format

UDP User Datagram Protocol

UPC Universal Product Code

USB Universal Serial Bus

VIC II Video Interface Chip II

241

LIST OF TABLES IDEDOS 0.90, February 24, 2019

List of Tables

1 C128 extra keys . 26
2 Detailed directory filetypes . 46
3 Bits of TOC format . 71
4 Bits of sub-channel read format . 72
5 Sub-channel read modes . 72
6 Sub-channel read data header . 72
7 Sub-channel read audio status codes 73
8 Sub-channel CD current position data format 73
9 Sub-channel control field of CD current position 74
10 Manager keys . 83
11 Monitor editor keys . 106
12 Monitor commands . 107
13 LL list format . 121
14 Default BASIC function keys . 126
15 Device status ($90) . 128
16 Messages ($9D) . 129
17 File numbers ($B8) . 130
18 Device numbers ($BA) . 130
19 Secondary addresses ($B9) . 131
20 Error codes returned by IDEDOS and KERNAL 144
21 Direct KERNAL call replacement table 157
22 X1541 PCLink cable . 161
23 Parallel PCLink cable . 162
24 Serial PCLink cable . 163
25 Ethernet crosslink PCLink cable 164
26 G-P data format . 172
27 T-RB and T-RD data format . 177

242

IDEDOS 0.90, February 24, 2019 LIST OF LISTINGS

28 Disk format codes . 178
29 Bits of fast forward and reverse mode byte 185
30 Volume control format . 186
31 Output channel selection . 187
32 ShortBus pinout . 232
33 Clock-port pinout . 236

List of Figures

1 IDE64 V3.4 cartridge . 15
2 Start screen of the setup utility . 24
3 Standard setup screen of the setup utility 25
4 Device number setup screen of the setup utility 29
5 Advanced setup screen of the setup utility 31
6 The File Manager . 78
7 The IDE64 builtin monitor . 86
8 128 KiB PEROM upgrade . 205
9 Location of the PGM pin on different cards 206
10 The Perom programmer utility . 208
11 ShortBus female cable connector 227

List of Listings

1 Path handling example . 49
2 BASIC directory list . 58
3 Reading load address from file . 59
4 SEQ file writing . 60

243

LIST OF LISTINGS IDEDOS 0.90, February 24, 2019

5 Relative file copy . 63
6 Link creation . 63
7 Link content reading . 64
8 Block read and positioning . 69
9 Block read for identifying drive . 69
10 Plugin sample source . 79
11 MAN,USR generator source . 80
12 Shell sample source . 113
13 Function key redefinition . 118
14 READST usage example . 127
15 SETMSG usage example . 128
16 STOP usage example . 129
17 SETLFS, SETNAM and OPEN usage example 132
18 CLOSE usage example . 133
19 CHKIN usage example . 134
20 CHKOUT usage example . 135
21 CHRIN usage example . 136
22 GETIN usage example . 137
23 GETIN usage for keyboard read 137
24 CHROUT usage example . 138
25 CLALL usage example . 139
26 CLRCHN usage example . 140
27 LOAD usage example . 141
28 SAVE usage example . 143
29 IDE64 card detection . 145
30 ActionReplay card detection . 146
31 WRITE compatibility fallback routine 147
32 READ and WRITE usage for copy 149
33 READ compatibility fallback routine 151

244

IDEDOS 0.90, February 24, 2019 LIST OF LISTINGS

34 Interrupt vector restoring . 155
35 IRQ vector restoring . 155
36 Vector save and restore . 156
37 Error channel reading . 156
38 Directory list in assembly . 158
39 Relative file seek . 166
40 Normal file seek . 166
41 Get current partition . 172
42 Check if partition exists . 172
43 Disk change detection . 174
44 Get power state . 175
45 Channel reversing . 186
46 Mono mixing . 186
47 Volume query . 187
48 Medium type detection . 188
49 Drive capabilities detection . 189

245

Index

accu, 19
charging, 27

append, 61

backtrace, 97
battery, 19
binary, 95
block

read, 67
write, 68

boot file, 24
bugs, 13

C128, 200
keyboard, 26, 85

CD, 115
DOS wedge, 113

CD-ROM
audio, 183
commands, 183
format, 35
slowdown, 32
volume, 186

CDCLOSE, 116
CDOPEN, 116
CFSfdisk, 36

CFSfsck, 211
CHANGE, 116
CHKIN, 134
CHKOUT, 135
CHRIN, 136
CHROUT, 138
CLALL, 139
clock

read, 177
set, 23

clock-port, 233
CLOSE, 65

KERNAL, 133
CLRCHN, 140
CMD, 66

emulation, 27
colors, 28
copy, 75
create

directory, 123, 182
partition, 37

DATE, 117
set, 23

DE32, 21
DEF, 117

246

IDEDOS 0.90, February 24, 2019 INDEX

device number, 28
change, 116, 173

DigiMAX, 229
DIR, 118

DOS wedge, 110
direct channel, 67

open, 58
directory, 45

change, 115, 180
create, 123, 182
formatted, 58
header, 182
list, 45, 118
raw, 52, 58
remove, 124, 182

diskchange, 174
Distributors, 237
Dolphin DOS, 201
DOS wedge, 109

disable, 26
drive capabilities, 189
DUART, 228

PCLink, 163
DVD

format, 35

eject, 176
error messages, 193
ETFE, 229

ETH64, 227
ETH64II, 233
Ethernet

PCLink, 163

fastloader, 24
files, 53
filesystem

check, 211
format, 35

format
disk, 178
partition, 35

freeze, 90
point, 104

function keys
BASIC, 126
disable, 27
manager, 83
monitor, 105
redefine, 117

GET#, 65
GETIN, 137

HDINIT, 118
header, 182
hide

file, 170

247

INDEX IDEDOS 0.90, February 24, 2019

hole, 53, 166

identify
drive, 174

information, 237
INIT, 119
initialize, 167
INPUT#, 65
Internet, 2, 237

JiffyDOS, 201

KILL, 119
KILLNEW, 120

link, 63
LL, 120
LOAD, 56, 122

DOS wedge, 110–112
error, 33
KERNAL, 141
monitor, 89

lock
directory, 170
file, 170
medium, 176

LS-120, 18
bug, 33

MAN, 123

manager, 75
keys, 83
start, 123

medium type, 188
memory

read, 191
write, 191

MKDIR, 123
modify, 61
monitor, 85

commands, 107
keys, 105

move, 169
MP3@64, 235

OPEN, 57
KERNAL, 132

partition
change, 171
edit, 39
hide, 40
info, 172
list, 43

path, 48
PCLink, 161
peripherals, 18

clock-port, 233
ShortBUS, 227

248

IDEDOS 0.90, February 24, 2019 INDEX

plugin, 77
config, 80
format, 78

position, 165
power

management, 31, 175
supply, 16
up, 19

PRINT#, 65

READ, 149
read error, 193
READST, 127
relative file, 61
remove

directory, 124, 182
file, 167
partition, 37

rename
disklabel, 38
file, 169
header, 182
partition, 37

reset, 15
drive, 174

RM, 124
RMDIR, 124
RR-Net, 234

SAVE, 55, 124
DOS wedge, 112
KERNAL, 143
monitor, 88

scratch, 124, 167
seeking, 165
selftest, 20
SETLFS, 130
SETMSG, 128
SETNAM, 131
setup, 23
shell, 113
ShortBUS, 227
SilverSurfer, 234
spin down, 175
sprite, 96
status, 128
STOP, 129
SuperCPU, 20, 199

monitor, 86
SYS, 125
system drive, 29

TI$, 25

USB
PCLink, 164

validate, 191

249

INDEX IDEDOS 0.90, February 24, 2019

filesystem check, 211
VERIFY, 56, 125

DOS wedge, 111
KERNAL, 141
monitor, 90

wildcard
file, 50
monitor, 100

WRITE, 146
write protect

directory, 170
drive, 179
file, 170
partition, 39

X1541, 161

Zip drive, 17

250

	Titlepage
	Foreword
	Contents
	1 About the cartridge
	2 Hardware setup
	2.1 Cabling, jumpers
	2.2 Power supply
	2.3 CompactFlash connector
	2.4 Zip drive
	2.5 LS-120, A-Drive
	2.6 Peripherals
	2.7 Battery
	2.8 Let's start
	2.9 Troubleshooting

	3 The Setup utility
	3.1 Standard setup
	3.2 Color setup
	3.3 Device numbers
	3.4 Advanced setup

	4 Preparing a blank disk
	4.1 The CFSfdisk utility
	4.2 CFSfdisk notes
	4.3 Mixed disks

	5 Using partitions
	6 Using directories
	6.1 Paths
	6.2 Wildcards
	6.3 Raw directory access

	7 Using files
	7.1 SAVE
	7.2 LOAD, VERIFY
	7.3 OPEN
	7.4 CLOSE
	7.5 INPUT#, GET#
	7.6 PRINT#
	7.7 CMD
	7.8 File operations

	8 Direct access
	8.1 Block-read
	8.2 Block-write
	8.3 Buffer-pointer
	8.4 TOC-read
	8.5 Sub-channel-read

	9 The File Manager
	9.1 Plugins
	9.2 Manager configuration file

	10 Using the monitor
	10.1 Starting the monitor
	10.2 Disk commands
	10.3 Display and modify memory
	10.4 Execution control
	10.5 Memory area commands
	10.6 Miscellaneous

	11 DOS Wedge
	11.1 At sign – DOS command
	11.2 At, number sign – select device
	11.3 At, dollar sign – list directory
	11.4 Slash – load BASIC program
	11.5 Percent sign – load assembly program
	11.6 Apostrophe – verify assembly file
	11.7 Up arrow – autostart BASIC program
	11.8 Left arrow – save BASIC program
	11.9 Pound sign – autostart assemble program
	11.10 Period – change directory
	11.11 Hashmark – execute shell

	12 BASIC extensions
	12.1 CD – change directory
	12.2 CDCLOSE – insert medium
	12.3 CDOPEN – eject medium
	12.4 CHANGE – change device number
	12.5 DATE – display date
	12.6 DEF – redefine F-keys
	12.7 DIR – list directory
	12.8 HDINIT – redetect drives
	12.9 INIT – init memory
	12.10 KILL – disable cartridge
	12.11 KILLNEW – recover basic program
	12.12 LL – long directory list
	12.13 LOAD – load a program
	12.14 MAN – start manager
	12.15 MKDIR – create directory
	12.16 RM – remove file
	12.17 RMDIR – remove directory
	12.18 SAVE – save a program
	12.19 SYS – start ML program
	12.20 VERIFY – verify program

	13 Programming in assembly
	13.1 Standard KERNAL routines
	13.2 IDE64 specific routines
	13.3 IDE64 compatible programming

	14 PCLink
	14.1 PCLink over IEC bus
	14.2 PCLink over PC64 cable
	14.3 PCLink over RS-232C
	14.4 PCLink over ethernet
	14.5 PCLink over USB

	15 Command channel
	15.1 File management commands
	15.2 Filesystem management commands
	15.3 Partition management commands
	15.4 Device management commands
	15.5 Direct access commands
	15.6 Directory handling commands
	15.7 CD-ROM related commands
	15.8 Misc commands

	16 IDEDOS error messages
	17 Compatibility
	17.1 Hardware
	17.2 Software

	18 Updating IDEDOS
	19 Filesystem checking
	19.1 Using CFSfsck
	19.2 Errors and resolutions

	20 Frequently Asked Questions
	21 GNU FDL
	A The ShortBus
	B The clock-port
	C More information
	C.1 Related Internet sites
	C.2 Distributors

	D Acronyms
	List of Tables
	List of Figures
	List of Listings
	Index

